-
Frequency bifurcation is the most typical nonlinear phenomenon in inductive power transfer (IPT) systems. Two stable and one unstable resonant frequencies exist in a bifurcated IPT system while the unstable one lies between the two stable frequencies. To achieve the transition control of the bifurcated frequencies, this paper proposes an orbit shift method through a time delay perturbation, which is applied to the feedback signal. The phase trajectory can be shifted among the stable limit cycle attractors by adjusting the parameters of the time delay perturbation. The operation principle and implementation of the proposed method have been investigated in detail on an example IPT system with series tuned primary and secondary circuits. Both simulation and experimental results have verified the validation of the proposed method. The research results can provide useful theoretical reference for transition control of other similar multiple-attractor bifurcation behaviors.
-
Keywords:
- inductive power transfer /
- frequency bifurcation /
- transition control /
- time delay perturbation
[1] Cha H, Park W, Je M 2012 IEEE Trans. CAS II 59 409
[2] Liu X, Hui S Y R 2007 IEEE Trans. Power Electron 22 21
[3] Huh J, Lee S W, Lee W Y, Cho G H, Rim C T 2011 IEEE Trans. Power Electron 26 3666
[4] Wang C S, Covic G A, Stielau O H 2004 IEEE Trans. Ind. Electron 51 148
[5] Tang C S, Sun Y, Su Y G, Nguang S K, Hu A P 2009 IEEE Trans. Power Electron 24 416
[6] Tang C S, Sun Y, Dai X, Wang Z H, Su Y G, Hu A P 2011 Acta Phys. Sin. 60 745 (in Chinese) [唐春森, 孙跃, 戴欣, 王智慧, 苏玉刚, 呼爱国 2011 60 745]
[7] Dai X, Huang X Y, Sun Y 2006 Transactions of China Electrotechnical Society 21 78 (in Chinese) [戴欣, 黄席樾, 孙跃 2006 电工技术学报 21 78]
[8] Wang F Q, Zhang H, Ma X K, Li X M 2009 Acta Phys. Sin. 58 6838 (in Chinese) [王发强, 张浩, 马西奎, 李秀明 2009 58 6838]
[9] Maity S, Suraj Y 2012 IEEE Trans. Power Electron. 27 4914
[10] Sha J, Bao B C, Xu J P, Gao Y 2012 Acta Phys. Sin. 61 120501 (in Chinese) [沙金, 包伯成, 许建平, 高玉 2012 61 120501]
[11] Yang R, Zhang B 2007 Acta Phys. Sin. 56 3789 (in Chinese) [杨汝, 张波 2007 56 3789]
[12] Han T, Zhuo F, Yan J K, Liu T, Wang Z A 2005 Advanced Technology of Electrical Engineering and Energy 24 45 (in Chinese) [韩腾, 卓放, 闫军凯, 刘涛, 王兆安 2005 电工电能新技术 24 45]
[13] Niu W Q, Gu W, Chu J X, Shen A D 2012 Electro. Letters 48 723
-
[1] Cha H, Park W, Je M 2012 IEEE Trans. CAS II 59 409
[2] Liu X, Hui S Y R 2007 IEEE Trans. Power Electron 22 21
[3] Huh J, Lee S W, Lee W Y, Cho G H, Rim C T 2011 IEEE Trans. Power Electron 26 3666
[4] Wang C S, Covic G A, Stielau O H 2004 IEEE Trans. Ind. Electron 51 148
[5] Tang C S, Sun Y, Su Y G, Nguang S K, Hu A P 2009 IEEE Trans. Power Electron 24 416
[6] Tang C S, Sun Y, Dai X, Wang Z H, Su Y G, Hu A P 2011 Acta Phys. Sin. 60 745 (in Chinese) [唐春森, 孙跃, 戴欣, 王智慧, 苏玉刚, 呼爱国 2011 60 745]
[7] Dai X, Huang X Y, Sun Y 2006 Transactions of China Electrotechnical Society 21 78 (in Chinese) [戴欣, 黄席樾, 孙跃 2006 电工技术学报 21 78]
[8] Wang F Q, Zhang H, Ma X K, Li X M 2009 Acta Phys. Sin. 58 6838 (in Chinese) [王发强, 张浩, 马西奎, 李秀明 2009 58 6838]
[9] Maity S, Suraj Y 2012 IEEE Trans. Power Electron. 27 4914
[10] Sha J, Bao B C, Xu J P, Gao Y 2012 Acta Phys. Sin. 61 120501 (in Chinese) [沙金, 包伯成, 许建平, 高玉 2012 61 120501]
[11] Yang R, Zhang B 2007 Acta Phys. Sin. 56 3789 (in Chinese) [杨汝, 张波 2007 56 3789]
[12] Han T, Zhuo F, Yan J K, Liu T, Wang Z A 2005 Advanced Technology of Electrical Engineering and Energy 24 45 (in Chinese) [韩腾, 卓放, 闫军凯, 刘涛, 王兆安 2005 电工电能新技术 24 45]
[13] Niu W Q, Gu W, Chu J X, Shen A D 2012 Electro. Letters 48 723
Catalog
Metrics
- Abstract views: 5613
- PDF Downloads: 488
- Cited By: 0