-
In this paper, we systematically investigate the dynamics of non-magnetic spheres (polystyrene spheres) and magnetic nanoparticles dispersed in Fe3O4 magnetic colloid under an externally applied magnetic field. It is found that the polystyrene spheres form chain-like structures when the direction of magnetic field is parallel to the sample cell. The whole dynamic process of polystyrene spheres in the magnetic field can be characterized by a fast interaction between polystyrene spheres and magnetic nanoparticles and a slow interaction among polystyrene chain-like structures respectively. When a magnetic field is applied in the direction perpendicular to the sample cell, polystyrene spheres can be assembled into a short-range ordered two-dimensional structure due to the repulsive interaction among polystyrene spheres. Once the applied magnetic field excesses a critical level, a flower-shaped complex structure can be formed due to the attractive interaction between the polystyrene sphere and the magnetic cluster.
-
Keywords:
- magnetic fluid /
- magnetic assembly /
- non-magnetic particles
[1] Miao Y P, Yao J Q 2013 Acta Phys. Sin. 62 044223 (in Chinese) [苗银萍, 姚建铨 2013 62 044223]
[2] Yu G J, Pu S L, Wang X, Ji H Z 2012 Acta Phys. Sin. 61 194703 (in Chinese) [于国君,卜胜利, 王响, 纪红柱 2012 61 044223]
[3] Liu G X, Xu C, Zhang P Q, Wu T W 2009 Acta Phys. Sin. 58 2005 (in Chinese) [刘桂雄, 徐晨, 张沛强, 吴庭万 2009 58 2005]
[4] Skjeltorp A T 1983 Phys. Rev. Lett. 51 2306
[5] Helgesen G, Skjeltorp A T, Mors P M, Botet R, Jullien R 1988 Phys. Rev. Lett. 61 1736
[6] Skjeltorp A T, Meakin P 1988 Nature 335 424
[7] Skjeltorp A T 1985 J. Appl. Phys. 57 3285
[8] Skjeltorp A T 1987 Phys. Rev. Lett. 58 1444
[9] Erb R M, Son H S, Samanta B, Rotello V M, Yellen B B 2009 Nature 457 999
[10] Yellen B B, Hovorka O, Friedman G 2005 Proc. Natl. Acad. Sci. USA 102 8860
[11] Yellen B B, Friedman G 2004 Adv. Mater. 16 111
[12] Khalil K S, Sagastegui A, Li Y, Tahir M A, Socolar J E S, Wiley B J, Yellen B B 2012 Nature Commun. 3 794
[13] Kim H, Ge J, Kim J, Choi S, Lee H, Lee H, Park W, Yin Y, Kwon S 2009 Nature Photon. 3 534
[14] Ge J, He L, Goebl J, Yin Y 2009 J. Am. Chem. Soc. 131 3484
[15] Ge J, Huynh T, Hu Y, Yin Y 2008 Nano Lett. 8 931
[16] He L, Hu Y, Kim H, Ge J, Kwon S, Yin Y 2010 Nano Lett. 10 4708
[17] He L, Wang M, Zhang Q, Lu Y, Yin Y 2013 Nano Lett. 13 264
[18] Erb R M, Libanori R, Rothfuchs N, Studart A R 2012 Science 335 109
[19] Hong C Y, Horng H E, Kuo F C, Yang S Y, Yang H C, Wu J M 1999 Appl. Phys. Lett. 75 2196
-
[1] Miao Y P, Yao J Q 2013 Acta Phys. Sin. 62 044223 (in Chinese) [苗银萍, 姚建铨 2013 62 044223]
[2] Yu G J, Pu S L, Wang X, Ji H Z 2012 Acta Phys. Sin. 61 194703 (in Chinese) [于国君,卜胜利, 王响, 纪红柱 2012 61 044223]
[3] Liu G X, Xu C, Zhang P Q, Wu T W 2009 Acta Phys. Sin. 58 2005 (in Chinese) [刘桂雄, 徐晨, 张沛强, 吴庭万 2009 58 2005]
[4] Skjeltorp A T 1983 Phys. Rev. Lett. 51 2306
[5] Helgesen G, Skjeltorp A T, Mors P M, Botet R, Jullien R 1988 Phys. Rev. Lett. 61 1736
[6] Skjeltorp A T, Meakin P 1988 Nature 335 424
[7] Skjeltorp A T 1985 J. Appl. Phys. 57 3285
[8] Skjeltorp A T 1987 Phys. Rev. Lett. 58 1444
[9] Erb R M, Son H S, Samanta B, Rotello V M, Yellen B B 2009 Nature 457 999
[10] Yellen B B, Hovorka O, Friedman G 2005 Proc. Natl. Acad. Sci. USA 102 8860
[11] Yellen B B, Friedman G 2004 Adv. Mater. 16 111
[12] Khalil K S, Sagastegui A, Li Y, Tahir M A, Socolar J E S, Wiley B J, Yellen B B 2012 Nature Commun. 3 794
[13] Kim H, Ge J, Kim J, Choi S, Lee H, Lee H, Park W, Yin Y, Kwon S 2009 Nature Photon. 3 534
[14] Ge J, He L, Goebl J, Yin Y 2009 J. Am. Chem. Soc. 131 3484
[15] Ge J, Huynh T, Hu Y, Yin Y 2008 Nano Lett. 8 931
[16] He L, Hu Y, Kim H, Ge J, Kwon S, Yin Y 2010 Nano Lett. 10 4708
[17] He L, Wang M, Zhang Q, Lu Y, Yin Y 2013 Nano Lett. 13 264
[18] Erb R M, Libanori R, Rothfuchs N, Studart A R 2012 Science 335 109
[19] Hong C Y, Horng H E, Kuo F C, Yang S Y, Yang H C, Wu J M 1999 Appl. Phys. Lett. 75 2196
Catalog
Metrics
- Abstract views: 6458
- PDF Downloads: 693
- Cited By: 0