-
In the last twenty years, the ZnO/diamond layered structure for surface acoustic wave (SAW) devices have been widely studied and have attracted great attention, due to its advantages of high acoustic velocity, high electromechanical coupling coefficient and high power durability. Distinguished from the conventional single-crystal substrate (such as quartz, lithium niobate), ZnO/diamond layered structure shows dispersive SAW properties, which can be excited by four ways: interdigital transducer (IDT)/ZnO/diamond, IDT/ZnO/shorting metal/diamond, ZnO/IDT/diamond, and shorting metal/ ZnO/IDT/diamond. In this paper, the formulation based on the stiffness matrix method for calculating the effective permittivity of ZnO/diamond layered structure under four excitation conditions is given first. Then, by using this formulation, the SAW properties of the monocrystalline ZnO (002) film on polycrystalline diamond and the polycrystalline ZnO (002) film on polycrystalline diamond are calculated respectively. Based on the results of calculation, the ZnO film thicknesses qualified to design and fabricate SAW device are analyzed in detail. Finally, we discuss the function of diamond film thickness of ZnO/diamond/Si layered structure so as to avoid the influence of the silicon substrate on the SAW properties.
-
Keywords:
- surface acoustic wave /
- piezoelectric multilayered structure /
- effective permittivity /
- stiffness matrix method
[1] Nakahata H, Higaki K, Fujii S, Hachigo A, Kitabayashi H, Tanabe K, Seki Y, Shikata S 1995 Proc. IEEE Ultrason. Symp. 1 361
[2] Higaki K, Nakahata H, Kitabayashi H, Fujii S, Tanabe K, Seki Y, Shikata S 1997 IEEE Trans. Ultrason. Ferroelect. Freq. Contr. 44 1395
[3] Fujii S, Seki Y, Yoshida K, Nakahata H, Higaki K, Kitabayashi H, Shikata S 1997 Proc. IEEE Ultrason. Symp. 1 183
[4] Guang Y, Santos P V 2007 Acta Phys. Sin. 56 3515 (in Chinese) [杨光, Santos P V 2007 56 3515]
[5] Pedrós J, Garcia-Gancedo L, Ford C, Barnes C, Griffiths J, Jones G, Flewitt A 2011 J. Appl. Phys. 110 103501
[6] Fu Y, Garcia-Gancedo L, Pang H, Porro S, Gu Y, Luo J, Zu X, Placido F, Wilson J, Flewitt A 2012 Biomicrofluidics 6 024105
[7] Pan F, Luo J T, Yang Y C, Wang X B, Zeng F 2012 Sci. China Tech. Sci. 55 421
[8] Luo J, Zeng F, Pan F, Li H, Niu J, Jia R, Liu M 2010 Appl. Surf. Sci. 256 3081
[9] Luo J, Fan P, Pan F, Zeng F, Zhang D, Zheng Z, Liang G, Cai X 2012 Phys. Status Solidi RRL 6 381
[10] Luo J, Pan F, Fan P, Zeng F, Zhang D, Zheng Z, Liang G 2012 Appl. Phys. Lett. 101 172909
[11] Hachigo A, Malocha D C 1998 IEEE Trans. Ultrason., Ferroelect. Freq. Contr. 45 660
[12] Wu T T, Chen Y Y 2002 IEEE Trans. Ultrason., Ferroelect. Freq. Contr. 49 142
[13] Wu T T, Chen Y Y, Chou T T 2002 Proc. IEEE Ultrason. Symp. 1 271
[14] Nakahata H, Hachigo A, Higaki K, Fujii S, Shikata S, Fujimori N 1995 IEEE Trans. Ultrason. Ferroelect. Freq. Contr. 42 362
[15] Adler E L, Solie L 1995 Proc. IEEE Ultrason. Symp. 1 341
[16] Campbell J J, Jones W R 1968 IEEE Sonics and Ultrason. 15 209
[17] Adler E L 1990 IEEE Trans. Ultrason., Ferroelect. Freq. Contr. 37 485
[18] Levent Degertekin F, Honein B, Khuri-Yakub B 1996 Proc. IEEE Ultrason. Symp. 1 559
[19] Pastureaud T, Laude V, Ballandras S 2002 Appl. Phys. Lett. 80 2544
[20] Tan E L 2002 IEEE Trans. Ultrason., Ferroelect. Freq. Contr. 49 929
[21] Wang L, Rokhlin S L 2004 IEEE Trans. Ultrason., Ferroelect. Freq. Contr. 51 453
[22] Zhang V Y, Lefebvre J E, Bruneel C, Gryba T 2001 IEEE Trans. Ultrason. Ferroelect. Freq. Contr. 48 1449
[23] Milsom R F, Reilly N H C, Redwood M 1977 IEEE Sonics and Ultrason. 24 147
[24] Donghai Q, Wen L, Smith P M 1999 IEEE Trans. Ultrason., Ferroelect. Freq. Contr. 46 1242
[25] Smith P M 2001 IEEE Trans. Ultrason., Ferroelect. Freq. Contr. 48 171
[26] Peach R C 2006 IEEE Ultrason. Symp. Vancouver, BC, Oct. 2-6, 2006 p371
[27] Chen Y Y, Hsu J C, Wu T T 2004 J. Chin. Inst. Eng. 27 823
[28] Hashimoto K 2000 Surface acoustic wave devices in telecommunications: modelling and simulation (Berlin: Springer) p165
[29] Benetti M, Cannata D, Di Pictrantonio F, Verona E 2005 IEEE Trans. Ultrason. Ferroelect. Freq. Contr. 52 1806
[30] Carlotti G, Socino G, Petri A, Verona E 1987 IEEE Ultrason. Symp. Denver, Colorado, USA, Oct. 14-16, 1987 p295
[31] Jaffe H, Berlincourt D A 1965 Proc. IEEE 53 1372
[32] Hachigo A, Nakahata H, Itakura K, Fujii S, Shikata S 1999 Proc. IEEE Ultrason. Symp. 1 325
[33] Nakahata H, Hachigo A, Itakura K, Shikata S 2000 IEEE Ultrason. Symp. 1 349
[34] Morgan D 2007 Surface acoustic wave filters (2nd Edn.) (Oxford: Elsevier) p343
[35] Shikata S, Nakahata H, Higaki K, Hachigo A, Fujimori N, Yamamoto Y, Sakairi N, Takahashi Y 1993 Proc. IEEE Ultrason. Symp. 1 277
-
[1] Nakahata H, Higaki K, Fujii S, Hachigo A, Kitabayashi H, Tanabe K, Seki Y, Shikata S 1995 Proc. IEEE Ultrason. Symp. 1 361
[2] Higaki K, Nakahata H, Kitabayashi H, Fujii S, Tanabe K, Seki Y, Shikata S 1997 IEEE Trans. Ultrason. Ferroelect. Freq. Contr. 44 1395
[3] Fujii S, Seki Y, Yoshida K, Nakahata H, Higaki K, Kitabayashi H, Shikata S 1997 Proc. IEEE Ultrason. Symp. 1 183
[4] Guang Y, Santos P V 2007 Acta Phys. Sin. 56 3515 (in Chinese) [杨光, Santos P V 2007 56 3515]
[5] Pedrós J, Garcia-Gancedo L, Ford C, Barnes C, Griffiths J, Jones G, Flewitt A 2011 J. Appl. Phys. 110 103501
[6] Fu Y, Garcia-Gancedo L, Pang H, Porro S, Gu Y, Luo J, Zu X, Placido F, Wilson J, Flewitt A 2012 Biomicrofluidics 6 024105
[7] Pan F, Luo J T, Yang Y C, Wang X B, Zeng F 2012 Sci. China Tech. Sci. 55 421
[8] Luo J, Zeng F, Pan F, Li H, Niu J, Jia R, Liu M 2010 Appl. Surf. Sci. 256 3081
[9] Luo J, Fan P, Pan F, Zeng F, Zhang D, Zheng Z, Liang G, Cai X 2012 Phys. Status Solidi RRL 6 381
[10] Luo J, Pan F, Fan P, Zeng F, Zhang D, Zheng Z, Liang G 2012 Appl. Phys. Lett. 101 172909
[11] Hachigo A, Malocha D C 1998 IEEE Trans. Ultrason., Ferroelect. Freq. Contr. 45 660
[12] Wu T T, Chen Y Y 2002 IEEE Trans. Ultrason., Ferroelect. Freq. Contr. 49 142
[13] Wu T T, Chen Y Y, Chou T T 2002 Proc. IEEE Ultrason. Symp. 1 271
[14] Nakahata H, Hachigo A, Higaki K, Fujii S, Shikata S, Fujimori N 1995 IEEE Trans. Ultrason. Ferroelect. Freq. Contr. 42 362
[15] Adler E L, Solie L 1995 Proc. IEEE Ultrason. Symp. 1 341
[16] Campbell J J, Jones W R 1968 IEEE Sonics and Ultrason. 15 209
[17] Adler E L 1990 IEEE Trans. Ultrason., Ferroelect. Freq. Contr. 37 485
[18] Levent Degertekin F, Honein B, Khuri-Yakub B 1996 Proc. IEEE Ultrason. Symp. 1 559
[19] Pastureaud T, Laude V, Ballandras S 2002 Appl. Phys. Lett. 80 2544
[20] Tan E L 2002 IEEE Trans. Ultrason., Ferroelect. Freq. Contr. 49 929
[21] Wang L, Rokhlin S L 2004 IEEE Trans. Ultrason., Ferroelect. Freq. Contr. 51 453
[22] Zhang V Y, Lefebvre J E, Bruneel C, Gryba T 2001 IEEE Trans. Ultrason. Ferroelect. Freq. Contr. 48 1449
[23] Milsom R F, Reilly N H C, Redwood M 1977 IEEE Sonics and Ultrason. 24 147
[24] Donghai Q, Wen L, Smith P M 1999 IEEE Trans. Ultrason., Ferroelect. Freq. Contr. 46 1242
[25] Smith P M 2001 IEEE Trans. Ultrason., Ferroelect. Freq. Contr. 48 171
[26] Peach R C 2006 IEEE Ultrason. Symp. Vancouver, BC, Oct. 2-6, 2006 p371
[27] Chen Y Y, Hsu J C, Wu T T 2004 J. Chin. Inst. Eng. 27 823
[28] Hashimoto K 2000 Surface acoustic wave devices in telecommunications: modelling and simulation (Berlin: Springer) p165
[29] Benetti M, Cannata D, Di Pictrantonio F, Verona E 2005 IEEE Trans. Ultrason. Ferroelect. Freq. Contr. 52 1806
[30] Carlotti G, Socino G, Petri A, Verona E 1987 IEEE Ultrason. Symp. Denver, Colorado, USA, Oct. 14-16, 1987 p295
[31] Jaffe H, Berlincourt D A 1965 Proc. IEEE 53 1372
[32] Hachigo A, Nakahata H, Itakura K, Fujii S, Shikata S 1999 Proc. IEEE Ultrason. Symp. 1 325
[33] Nakahata H, Hachigo A, Itakura K, Shikata S 2000 IEEE Ultrason. Symp. 1 349
[34] Morgan D 2007 Surface acoustic wave filters (2nd Edn.) (Oxford: Elsevier) p343
[35] Shikata S, Nakahata H, Higaki K, Hachigo A, Fujimori N, Yamamoto Y, Sakairi N, Takahashi Y 1993 Proc. IEEE Ultrason. Symp. 1 277
Catalog
Metrics
- Abstract views: 6335
- PDF Downloads: 17235
- Cited By: 0