Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Calculation and analysis of surface acoustic wave properties of ZnO film on diamond under different excitation conditions

Qian Li-Rong Yang Bao-He

Citation:

Calculation and analysis of surface acoustic wave properties of ZnO film on diamond under different excitation conditions

Qian Li-Rong, Yang Bao-He
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • In the last twenty years, the ZnO/diamond layered structure for surface acoustic wave (SAW) devices have been widely studied and have attracted great attention, due to its advantages of high acoustic velocity, high electromechanical coupling coefficient and high power durability. Distinguished from the conventional single-crystal substrate (such as quartz, lithium niobate), ZnO/diamond layered structure shows dispersive SAW properties, which can be excited by four ways: interdigital transducer (IDT)/ZnO/diamond, IDT/ZnO/shorting metal/diamond, ZnO/IDT/diamond, and shorting metal/ ZnO/IDT/diamond. In this paper, the formulation based on the stiffness matrix method for calculating the effective permittivity of ZnO/diamond layered structure under four excitation conditions is given first. Then, by using this formulation, the SAW properties of the monocrystalline ZnO (002) film on polycrystalline diamond and the polycrystalline ZnO (002) film on polycrystalline diamond are calculated respectively. Based on the results of calculation, the ZnO film thicknesses qualified to design and fabricate SAW device are analyzed in detail. Finally, we discuss the function of diamond film thickness of ZnO/diamond/Si layered structure so as to avoid the influence of the silicon substrate on the SAW properties.
    • Funds: Project supported by the National High Technology Research and Development Program of China (Grant No. 2013AA030801), the National Natural Science Foundation of China (Grant No. 50972105), the Key Technology Research and Development Program of Tianjin, China (Grant No. 10ZCKFGX01200), and the Tianjin Key Program for Development of Science and Technology, China (Grant No. 10SYSYJC27700).
    [1]

    Nakahata H, Higaki K, Fujii S, Hachigo A, Kitabayashi H, Tanabe K, Seki Y, Shikata S 1995 Proc. IEEE Ultrason. Symp. 1 361

    [2]

    Higaki K, Nakahata H, Kitabayashi H, Fujii S, Tanabe K, Seki Y, Shikata S 1997 IEEE Trans. Ultrason. Ferroelect. Freq. Contr. 44 1395

    [3]

    Fujii S, Seki Y, Yoshida K, Nakahata H, Higaki K, Kitabayashi H, Shikata S 1997 Proc. IEEE Ultrason. Symp. 1 183

    [4]

    Guang Y, Santos P V 2007 Acta Phys. Sin. 56 3515 (in Chinese) [杨光, Santos P V 2007 56 3515]

    [5]

    Pedrós J, Garcia-Gancedo L, Ford C, Barnes C, Griffiths J, Jones G, Flewitt A 2011 J. Appl. Phys. 110 103501

    [6]

    Fu Y, Garcia-Gancedo L, Pang H, Porro S, Gu Y, Luo J, Zu X, Placido F, Wilson J, Flewitt A 2012 Biomicrofluidics 6 024105

    [7]

    Pan F, Luo J T, Yang Y C, Wang X B, Zeng F 2012 Sci. China Tech. Sci. 55 421

    [8]

    Luo J, Zeng F, Pan F, Li H, Niu J, Jia R, Liu M 2010 Appl. Surf. Sci. 256 3081

    [9]

    Luo J, Fan P, Pan F, Zeng F, Zhang D, Zheng Z, Liang G, Cai X 2012 Phys. Status Solidi RRL 6 381

    [10]

    Luo J, Pan F, Fan P, Zeng F, Zhang D, Zheng Z, Liang G 2012 Appl. Phys. Lett. 101 172909

    [11]

    Hachigo A, Malocha D C 1998 IEEE Trans. Ultrason., Ferroelect. Freq. Contr. 45 660

    [12]

    Wu T T, Chen Y Y 2002 IEEE Trans. Ultrason., Ferroelect. Freq. Contr. 49 142

    [13]

    Wu T T, Chen Y Y, Chou T T 2002 Proc. IEEE Ultrason. Symp. 1 271

    [14]

    Nakahata H, Hachigo A, Higaki K, Fujii S, Shikata S, Fujimori N 1995 IEEE Trans. Ultrason. Ferroelect. Freq. Contr. 42 362

    [15]

    Adler E L, Solie L 1995 Proc. IEEE Ultrason. Symp. 1 341

    [16]

    Campbell J J, Jones W R 1968 IEEE Sonics and Ultrason. 15 209

    [17]

    Adler E L 1990 IEEE Trans. Ultrason., Ferroelect. Freq. Contr. 37 485

    [18]

    Levent Degertekin F, Honein B, Khuri-Yakub B 1996 Proc. IEEE Ultrason. Symp. 1 559

    [19]

    Pastureaud T, Laude V, Ballandras S 2002 Appl. Phys. Lett. 80 2544

    [20]

    Tan E L 2002 IEEE Trans. Ultrason., Ferroelect. Freq. Contr. 49 929

    [21]

    Wang L, Rokhlin S L 2004 IEEE Trans. Ultrason., Ferroelect. Freq. Contr. 51 453

    [22]

    Zhang V Y, Lefebvre J E, Bruneel C, Gryba T 2001 IEEE Trans. Ultrason. Ferroelect. Freq. Contr. 48 1449

    [23]

    Milsom R F, Reilly N H C, Redwood M 1977 IEEE Sonics and Ultrason. 24 147

    [24]

    Donghai Q, Wen L, Smith P M 1999 IEEE Trans. Ultrason., Ferroelect. Freq. Contr. 46 1242

    [25]

    Smith P M 2001 IEEE Trans. Ultrason., Ferroelect. Freq. Contr. 48 171

    [26]

    Peach R C 2006 IEEE Ultrason. Symp. Vancouver, BC, Oct. 2-6, 2006 p371

    [27]

    Chen Y Y, Hsu J C, Wu T T 2004 J. Chin. Inst. Eng. 27 823

    [28]

    Hashimoto K 2000 Surface acoustic wave devices in telecommunications: modelling and simulation (Berlin: Springer) p165

    [29]

    Benetti M, Cannata D, Di Pictrantonio F, Verona E 2005 IEEE Trans. Ultrason. Ferroelect. Freq. Contr. 52 1806

    [30]

    Carlotti G, Socino G, Petri A, Verona E 1987 IEEE Ultrason. Symp. Denver, Colorado, USA, Oct. 14-16, 1987 p295

    [31]

    Jaffe H, Berlincourt D A 1965 Proc. IEEE 53 1372

    [32]

    Hachigo A, Nakahata H, Itakura K, Fujii S, Shikata S 1999 Proc. IEEE Ultrason. Symp. 1 325

    [33]

    Nakahata H, Hachigo A, Itakura K, Shikata S 2000 IEEE Ultrason. Symp. 1 349

    [34]

    Morgan D 2007 Surface acoustic wave filters (2nd Edn.) (Oxford: Elsevier) p343

    [35]

    Shikata S, Nakahata H, Higaki K, Hachigo A, Fujimori N, Yamamoto Y, Sakairi N, Takahashi Y 1993 Proc. IEEE Ultrason. Symp. 1 277

  • [1]

    Nakahata H, Higaki K, Fujii S, Hachigo A, Kitabayashi H, Tanabe K, Seki Y, Shikata S 1995 Proc. IEEE Ultrason. Symp. 1 361

    [2]

    Higaki K, Nakahata H, Kitabayashi H, Fujii S, Tanabe K, Seki Y, Shikata S 1997 IEEE Trans. Ultrason. Ferroelect. Freq. Contr. 44 1395

    [3]

    Fujii S, Seki Y, Yoshida K, Nakahata H, Higaki K, Kitabayashi H, Shikata S 1997 Proc. IEEE Ultrason. Symp. 1 183

    [4]

    Guang Y, Santos P V 2007 Acta Phys. Sin. 56 3515 (in Chinese) [杨光, Santos P V 2007 56 3515]

    [5]

    Pedrós J, Garcia-Gancedo L, Ford C, Barnes C, Griffiths J, Jones G, Flewitt A 2011 J. Appl. Phys. 110 103501

    [6]

    Fu Y, Garcia-Gancedo L, Pang H, Porro S, Gu Y, Luo J, Zu X, Placido F, Wilson J, Flewitt A 2012 Biomicrofluidics 6 024105

    [7]

    Pan F, Luo J T, Yang Y C, Wang X B, Zeng F 2012 Sci. China Tech. Sci. 55 421

    [8]

    Luo J, Zeng F, Pan F, Li H, Niu J, Jia R, Liu M 2010 Appl. Surf. Sci. 256 3081

    [9]

    Luo J, Fan P, Pan F, Zeng F, Zhang D, Zheng Z, Liang G, Cai X 2012 Phys. Status Solidi RRL 6 381

    [10]

    Luo J, Pan F, Fan P, Zeng F, Zhang D, Zheng Z, Liang G 2012 Appl. Phys. Lett. 101 172909

    [11]

    Hachigo A, Malocha D C 1998 IEEE Trans. Ultrason., Ferroelect. Freq. Contr. 45 660

    [12]

    Wu T T, Chen Y Y 2002 IEEE Trans. Ultrason., Ferroelect. Freq. Contr. 49 142

    [13]

    Wu T T, Chen Y Y, Chou T T 2002 Proc. IEEE Ultrason. Symp. 1 271

    [14]

    Nakahata H, Hachigo A, Higaki K, Fujii S, Shikata S, Fujimori N 1995 IEEE Trans. Ultrason. Ferroelect. Freq. Contr. 42 362

    [15]

    Adler E L, Solie L 1995 Proc. IEEE Ultrason. Symp. 1 341

    [16]

    Campbell J J, Jones W R 1968 IEEE Sonics and Ultrason. 15 209

    [17]

    Adler E L 1990 IEEE Trans. Ultrason., Ferroelect. Freq. Contr. 37 485

    [18]

    Levent Degertekin F, Honein B, Khuri-Yakub B 1996 Proc. IEEE Ultrason. Symp. 1 559

    [19]

    Pastureaud T, Laude V, Ballandras S 2002 Appl. Phys. Lett. 80 2544

    [20]

    Tan E L 2002 IEEE Trans. Ultrason., Ferroelect. Freq. Contr. 49 929

    [21]

    Wang L, Rokhlin S L 2004 IEEE Trans. Ultrason., Ferroelect. Freq. Contr. 51 453

    [22]

    Zhang V Y, Lefebvre J E, Bruneel C, Gryba T 2001 IEEE Trans. Ultrason. Ferroelect. Freq. Contr. 48 1449

    [23]

    Milsom R F, Reilly N H C, Redwood M 1977 IEEE Sonics and Ultrason. 24 147

    [24]

    Donghai Q, Wen L, Smith P M 1999 IEEE Trans. Ultrason., Ferroelect. Freq. Contr. 46 1242

    [25]

    Smith P M 2001 IEEE Trans. Ultrason., Ferroelect. Freq. Contr. 48 171

    [26]

    Peach R C 2006 IEEE Ultrason. Symp. Vancouver, BC, Oct. 2-6, 2006 p371

    [27]

    Chen Y Y, Hsu J C, Wu T T 2004 J. Chin. Inst. Eng. 27 823

    [28]

    Hashimoto K 2000 Surface acoustic wave devices in telecommunications: modelling and simulation (Berlin: Springer) p165

    [29]

    Benetti M, Cannata D, Di Pictrantonio F, Verona E 2005 IEEE Trans. Ultrason. Ferroelect. Freq. Contr. 52 1806

    [30]

    Carlotti G, Socino G, Petri A, Verona E 1987 IEEE Ultrason. Symp. Denver, Colorado, USA, Oct. 14-16, 1987 p295

    [31]

    Jaffe H, Berlincourt D A 1965 Proc. IEEE 53 1372

    [32]

    Hachigo A, Nakahata H, Itakura K, Fujii S, Shikata S 1999 Proc. IEEE Ultrason. Symp. 1 325

    [33]

    Nakahata H, Hachigo A, Itakura K, Shikata S 2000 IEEE Ultrason. Symp. 1 349

    [34]

    Morgan D 2007 Surface acoustic wave filters (2nd Edn.) (Oxford: Elsevier) p343

    [35]

    Shikata S, Nakahata H, Higaki K, Hachigo A, Fujimori N, Yamamoto Y, Sakairi N, Takahashi Y 1993 Proc. IEEE Ultrason. Symp. 1 277

  • [1] Huang Ming-Xian, Hu Wen-Bin, Bai Fei-Ming. Surface acoustic wave-spin wave coupling and magneto-acoustic nonreciprocal devices. Acta Physica Sinica, 2024, 73(15): 158501. doi: 10.7498/aps.73.20240462
    [2] Dong Yi-Lei, Chen Cheng, Lin Shu-Yu. Arbitrary variable thickness annular piezoelectric ultrasonic transducer based on transfer matrix method. Acta Physica Sinica, 2023, 72(5): 054304. doi: 10.7498/aps.72.20222110
    [3] Tan Zi-Hao, Sun Xiao-Wei, Song Ting, Wen Xiao-Dong, Liu Xi-Xuan, Liu Zi-Jiang. Numerical simulation study on band gap characteristics of surface phononic crystal with spherical composite column. Acta Physica Sinica, 2021, 70(14): 144301. doi: 10.7498/aps.70.20210165
    [4] Qin Chen, Yu Hui, Ye Qiao-Bo, Wei Huan, Jiang Xiao-Qing. An improved Mach-Zehnder acousto-optic modulator on a silicon-on-insulator platform. Acta Physica Sinica, 2016, 65(1): 014304. doi: 10.7498/aps.65.014304
    [5] Hao Juan, Zhou Guang-Gang, Ma Yue, Huang Wen-Qi, Zhang Peng, Lu Gui-Wu. Theoretical study on thermal and acoustic surface wave properties of Ga3PO7 crystal at high temperature. Acta Physica Sinica, 2016, 65(11): 113101. doi: 10.7498/aps.65.113101
    [6] Zeng Wei, Wang Hai-Tao, Tian Gui-Yun, Hu Guo-Xing, Wang Wen. Research on the oscillation effect of near-surface metal defect based on laser-generated acoustic surface wave. Acta Physica Sinica, 2015, 64(13): 134302. doi: 10.7498/aps.64.134302
    [7] Li Xiao-Ze, Teng Yan, Wang Jian-Guo, Song Zhi-Min, Zhang Li-Jun, Zhang Yu-Chuan, Ye Hu. Mode selection in surface wave oscillator with overmoded structure. Acta Physica Sinica, 2013, 62(8): 084103. doi: 10.7498/aps.62.084103
    [8] Zhou Zhen-Kai, Wei Li-Ming, Feng Jie. Simulation of characteristics of ZnO/diamond/Si structure surface acoustic wave. Acta Physica Sinica, 2013, 62(10): 104601. doi: 10.7498/aps.62.104601
    [9] Sun Hong-Xiang, Xu Bai-Qiang, Wang Ji-Jun, Xu Gui-Dong, Xu Chen-Guang, Wang Feng. Numerical simulation of laser-generated Rayleigh wave by finite element method on viscoelastic materials. Acta Physica Sinica, 2009, 58(9): 6344-6350. doi: 10.7498/aps.58.6344
    [10] Wang Jing-Shi, Xu Xiao-Dong, Liu Xiao-Jun, Xu Gang-Can. Low pass effect of surface defect metal based on laser ultrasonic. Acta Physica Sinica, 2008, 57(12): 7765-7769. doi: 10.7498/aps.57.7765
    [11] Yang Guang, Paulo V. Santos. Surface acoustic wave properties of ZnO films grown by magnetron sputtering. Acta Physica Sinica, 2007, 56(6): 3515-3520. doi: 10.7498/aps.56.3515
    [12] Xiao Xia, You Xue-Yi, Yao Su-Ying. Dispersion feature in arbitrary direction of surface acoustic wave applied to property characterization of ultra-large-scale integrated circuit interconnect films. Acta Physica Sinica, 2007, 56(4): 2428-2433. doi: 10.7498/aps.56.2428
    [13] Tong Yuan-Wei, Zhang Ye-Wen, He Li, Li Hong-Qiang, Chen Hong. The band structure in microwave frequency for quasi-1-D coaxial photonic crystals. Acta Physica Sinica, 2006, 55(2): 935-940. doi: 10.7498/aps.55.935
    [14] Yang Guang, P. V. Santos. Photoluminescence of GaAs(110) quantum wells modulated by surface acoustic waves. Acta Physica Sinica, 2006, 55(8): 4327-4331. doi: 10.7498/aps.55.4327
    [15] Wang Hong-Mei, Zhang Ya-Fei. Airy function and transfer matrix method in the study of quasi-bound levels of biased multi-barrier quantum structures. Acta Physica Sinica, 2005, 54(5): 2226-2232. doi: 10.7498/aps.54.2226
    [16] WANG HUI, LI YONG-PING. AN EIGEN MATRIX METHOD FOR OBTAINING THE BAND STRUCTURE OF PHOTONIC CRYSTALS. Acta Physica Sinica, 2001, 50(11): 2172-2178. doi: 10.7498/aps.50.2172
    [17] LIU JIAN-SHENG, LI RU-XIN, ZHU PIN-PIN, XU ZHI-ZHAN, LIU JING-RU. DYNAMICS OF LARGE-SIZE ATOMIC CLUSTERS IN ULTRA-SHORT HIGH-INTENSITY LASER PULSES. Acta Physica Sinica, 2001, 50(6): 1121-1127. doi: 10.7498/aps.50.1121
    [18] ZHENG HONG-XING GE, DE-BIAO. ELECTROMAGNETIC WAVE REFLECTION AND TRANSMISSION OF ANISOTROPIC LAYERED MEDIA BY GENERALIZED PROPAGATION MATRIX METHOD. Acta Physica Sinica, 2000, 49(9): 1702-1705. doi: 10.7498/aps.49.1702
    [19] Liu Ying-Li, Zhang Huai-Wu, Wang Hao-Cai, Zhong Zhi-Yong. Study on Dispersions of Width Mode of Magnetostatic Surface Wave Propagating in Periodic Multilayer Films. Acta Physica Sinica, 1999, 48(13): 98-104. doi: 10.7498/aps.48.98
    [20] WANG ZOU-QING, ZHOU SU-HUA, WANG CHENG-HAO. ON THE BRAGG-DIFFRACTION OF SURFACE ACOUSTIC WAVES BY ACOUSTIC GRATING. Acta Physica Sinica, 1983, 32(2): 156-167. doi: 10.7498/aps.32.156
Metrics
  • Abstract views:  6335
  • PDF Downloads:  17235
  • Cited By: 0
Publishing process
  • Received Date:  08 January 2013
  • Accepted Date:  22 February 2013
  • Published Online:  05 June 2013

/

返回文章
返回
Baidu
map