-
The tunable optical power splitter is a key optical component used to dynamically control its optical power at its output ports, which has a wide application in many optical fields. A novel approach to controllable optical power splitter is proposed in this work, which is based on thermal expansion effect resulting in width variation of air gap at the branching point of Y-branch waveguide. The thermal expansion profile and the optical performance are simulated by using the finite element method (FEM). The simulation results show that the tunable optical power splitter can exhibit good performance such as large dynamical range, low dependence of operation wavelength and its optical polarization. In addition, the proposed splitter with a simple structure can be easily designed, fabricated and controlled, which is very useful for potential application in integrated optical system.
-
Keywords:
- integrated optics /
- optical power splitter /
- thermal expansion effect /
- controllable performance
[1] Olivero M, Svalgaard M 2006 Opt. Express 14 162
[2] Chung K B, Yoon J S 2003 Opt. Quant. Electron. 35 959
[3] Bayindir M, Temelkuran B, Ozbay E 2000 Appl. Phys. Lett. 77 3902
[4] Veronis G, Shanhui Fan 2005 Appl. Phys. Lett. 87 131102-1
[5] Shuo-Yen Tseng, Choi S, Kippelen B 2009 Opt. Lett. 34 512
[6] Tang X G, Liao J K, Li H P, Lu R G, Liu Y Z 2009 Acta Optica Sinica 29 2077 (in Chinese) [唐雄贵, 廖进昆, 李和平, 陆荣国, 刘永智 2009 光学学报 29 2077]
[7] Tang X G, Liao J K, Li H P, Zhang L, Lu R G, Liu Y Z 2010 Opt. Express 18 21697
[8] Zhang Y W, Liu L Y, Wu X, Xu L 2008 Opt. Commun. 281 426
[9] Chen Q H, Wu W G, Yan G Z, Wang Z Q, Hao Y L 2008 IEEE Photon. Technol. Lett. 20 632
[10] Thapliya R, Kikuchi T, Nakamura S 2007 Appl. Opt. 46 4155
[11] Tang X G, Liao J K, Li H P, Zhang L, Lu R G, Liu Y Z 2011 Chin. Opt. Lett. 9 012301-1
[12] Wong W H, Liu K K, Chan K S 2006 J. Cryst. Growth 288 100
[13] Kawano K, Kitoh T 2001 Introduction to optical waveguide analysis: solving Maxwell's equations and the SchrEdinger equation (New York: John Wiley & Sons, Inc.) p20
[14] Jin J M 2002 The Finite Element Method in Electromagnetics (New York: John Wiley & Sons Inc.) p19
-
[1] Olivero M, Svalgaard M 2006 Opt. Express 14 162
[2] Chung K B, Yoon J S 2003 Opt. Quant. Electron. 35 959
[3] Bayindir M, Temelkuran B, Ozbay E 2000 Appl. Phys. Lett. 77 3902
[4] Veronis G, Shanhui Fan 2005 Appl. Phys. Lett. 87 131102-1
[5] Shuo-Yen Tseng, Choi S, Kippelen B 2009 Opt. Lett. 34 512
[6] Tang X G, Liao J K, Li H P, Lu R G, Liu Y Z 2009 Acta Optica Sinica 29 2077 (in Chinese) [唐雄贵, 廖进昆, 李和平, 陆荣国, 刘永智 2009 光学学报 29 2077]
[7] Tang X G, Liao J K, Li H P, Zhang L, Lu R G, Liu Y Z 2010 Opt. Express 18 21697
[8] Zhang Y W, Liu L Y, Wu X, Xu L 2008 Opt. Commun. 281 426
[9] Chen Q H, Wu W G, Yan G Z, Wang Z Q, Hao Y L 2008 IEEE Photon. Technol. Lett. 20 632
[10] Thapliya R, Kikuchi T, Nakamura S 2007 Appl. Opt. 46 4155
[11] Tang X G, Liao J K, Li H P, Zhang L, Lu R G, Liu Y Z 2011 Chin. Opt. Lett. 9 012301-1
[12] Wong W H, Liu K K, Chan K S 2006 J. Cryst. Growth 288 100
[13] Kawano K, Kitoh T 2001 Introduction to optical waveguide analysis: solving Maxwell's equations and the SchrEdinger equation (New York: John Wiley & Sons, Inc.) p20
[14] Jin J M 2002 The Finite Element Method in Electromagnetics (New York: John Wiley & Sons Inc.) p19
Catalog
Metrics
- Abstract views: 6602
- PDF Downloads: 539
- Cited By: 0