搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

硅基III-V族量子点激光器的发展现状和前景

王霆 张建军 Huiyun Liu

引用本文:
Citation:

硅基III-V族量子点激光器的发展现状和前景

王霆, 张建军, Huiyun Liu

Quantum dot lasers on silicon substrate for silicon photonic integration and their prospect

Wang Ting, Zhang Jian-Jun, Huiyun Liu
PDF
导出引用
  • 本文简要综述了硅基III-V族量子点激光器的研究进展. 在介绍了量子点激光器的优势和发展后, 重点介绍了近年来硅基、锗基III-V族量子点材料生长上的突破性进展及所带来的器件性能的大幅提高, 如实现了锗基和硅基1.3 m InAs/GaAs量子点激光器的室温激射, 锗基量子点激光器的阈值电流低至55.2 A/cm2并可达60 ℃以上的连续激射, 通过锗硅虚拟衬底, 在硅基上实现了30 ℃下以16.6 mW的输出功率达到4600 h的激光寿命, 这些突破性的进展为硅基光电子集成打开了新的大门.
    In this article, the recent progress of III-V quantum dot lasers on silicon substrates for silicon photonic integration is reviewed. By introducing various epitaxial techniques, room-temperature 1.3-m InAs/GaAs quantum dot laser on Si, Ge and SiGe substrates have been achieved respectively. Quantum dot lasers on Ge substrate has an ultra-low threshold current density of 55.2 A/cm2 at room temperature, which can operate over 60 ℃ in continuous-wave mode. Futhermore, by using the SiGe virtual substrate, at 30 ℃ and an output power of 16.6 mW, a laser lifetime of 4600 h has been reached, which indicates a bright future for the large-scale photonic integration.
    [1]

    Zhou Z P 2012 Si-based Optoeletronics (Beijing: Beijing University Press) (in Chinese) [周治平 2012 硅基光电子学 (北京: 北京大学出版社)]

    [2]

    Camacho-Aguilera R E, Cai Y, Patel N, Bessette J T, Romagnoli M, Kimerling L C, Michel J 2012 Opt. Express 20 11316

    [3]

    Wirths S, Geiger R, von den Driesch N, Mussler G, Stoica T, Mantl S, Ikonic Z, Luysberg M, Chiussi S, Hartmann J M, Sigg H, Faist J, Buca D, Grtzmacher D 2015 Nat. Photon. 9 88

    [4]

    D'Avezac M, Luo J W, Chanier T, Zunger A 2012 Phys. Rev. Lett. 108 027401

    [5]

    Liu H, Wang T, Jiang Q, Hogg R, Tutu F, Pozzi F, Seeds A 2011 Nat. Photon. 5 416

    [6]

    Wang T, Liu H, Lee A, Pozzi F, Seeds A 2011 Opt. Express 19 11381

    [7]

    Lee A, Jiang A, Tang M, Seeds A, Liu H 2012 Opt. Express 20 22181

    [8]

    Chen S, Tang M, Wu J, Jiang Q, Dorogan V, Benamara M, Mazur Y, Salamo G, Seeds A, Liu H 2014 Electron Lett. 50 1467

    [9]

    Kroemer H 1963 Proc. IEEE 51 1782

    [10]

    Alferov Z I, Kazarinov R 1963 181737

    [11]

    Asada M, Miyamoto Y, Suematsu Y 1986 IEEE J. Quant. Electron. 22 1915

    [12]

    Arakawa Y, Sakaki H 1982 Appl. Phys. Lett. 40 939

    [13]

    Liu G, Stintz A, Li H, Malloy K, Lester L 1999 Electron. Lett. 35 1163

    [14]

    Liu H, Hopkinson M, Harrison C, Steer M, Frith R, Sellers I, Mowbray D, Skolnick M 2003 J. Appl. Phys. 93 2931

    [15]

    Liu H, Sellers I, Badcock T, Mowbray D, Skolnick M, Groom K, Gutierrez M, Hopkinson M, Ng J, David J 2004 Appl. Phys. Lett. 85 704

    [16]

    Liu H, Sellers I, Gutierrez M, Groom K, Soong W, Hopkinson M, David J, Beanland R, Badcock T, Mowbray D 2004 J. Appl. Phys. 96 1988

    [17]

    Sugawara M, Usami M 2009 Nat. Photon. 3 30

    [18]

    Maximov M V, Ledentsov N N 2004 Dekker Encyclopedia Nanosci. Nanotechnol. 3109

    [19]

    Li S, Gong Q, Cao C, Wang X, Yan J, Wang Y, Wang H 2013 Infrared Phys. Technol. 60 216

    [20]

    Dingle R, Henry C H 1976 US3982207A

    [21]

    Hirayama H, Matsunaga K, Asada M, Suematsu Y 1994 Electron Lett. 30 142

    [22]

    Kirstaedter N, Ledentsov N N, Grundmann M, Bimberg D, Ustinov V M, Ruvimov S S, Maximov M V, Kop'ev P S, Alferov Z I, Richter U, Werner P, Gosele U, Heydenreich J 1994 Electron Lett. 30 1416

    [23]

    Wu J, Chen S, Seeds A, Liu H 2015 J. Phys. D 48 363001

    [24]

    van der Ziel J P, Dupuis R D, Logan R A, Pinzone C J 1987 Appl. Phys. Lett. 51 89

    [25]

    Choi H K, Wang C A, Karam N H 1991 Appl. Phys. Lett. 59 2633

    [26]

    Kazi Z I, Thilakan P, Egawa T, Umeno M, Jimbo T 2001 Jpn. J. Appl. Phys. 40 4903

    [27]

    Kazi Z I, Egawa T, Jimbo T, Umeno M 2000 Jpn. J. Appl. Phys. 39 3860

    [28]

    Groenert M E, Pitera A J, Ram R J, Fitzgerald E A 2003 J. Vac. Sci. Technol. B 21 1064

    [29]

    Liu A Y, Herrick R W, Ueda O, Petroff P M, Gossard A C, Bowers J E 2015 IEEE J. Quantum Electron. 21 1900708

    [30]

    Jalali B, Fathpour S 2006 J. Lightwave Techn. 24 4600

    [31]

    Rong H, Jones R, Liu A, Cohen O, Hak D, Fang A, Paniccia M 2005 Nature 433 725

    [32]

    Chen X, Li C, Tsang H K 2011 NPG Asia Materials 3 34

    [33]

    Park H, Fang A W, Kodama S, Bowers J E 2005 Opt. Express 13 9460

    [34]

    Tanabe K, Watanabe K, Arakawa Y 2012 Sci. Rep. 2 349

    [35]

    Liang D, Bowers J E 2010 Nat. Photon. 4 511

    [36]

    Wang W 1984 Appl. Phys. Lett. 44 1149

    [37]

    Fletcher R M, Wagner D K, Ballantyne J M 1984 Appl. Phys. Lett. 44 967

    [38]

    Deppe D, Holonyak J N, Nam D, Hsieh K, Jackson G, Matyi R, Shichijo H, Epler J, Chung H 1987 Appl. Phys. Lett. 51 637

    [39]

    Deppe D, Nam D, Holonyak J N, Hsieh K, Matyi R, Shichijo H, Epler J, Chung H 1987 Appl. Phys. Lett. 51 1271

    [40]

    Kaliski R, Holonyak J N, Hsieh K, Nam D, Lee J, Shichijo H, Burnham R, Epler J, Chung H 1987 Appl. Phys. Lett. 50 836

    [41]

    Hall D, Deppe D, Holonyak J N, Matyi R, Shichijo H, Epler J 1988 J. Appl. Phys. 64 2854

    [42]

    Linder K, Phillips J, Qasaimeh O, Liu X, Krishna S, Bhattacharya P, Jiang J 1999 Appl. Phys. Lett. 74 1355

    [43]

    Kazi Z I, Egawa T, Umeno M, Jimbo T 2001 J. Appl. Phys. 90 5463

    [44]

    Mi Z, Bhattacharya P, Yang J, Pipem K 2005 Electron. Lett. 41 742

    [45]

    Mi Z, Yang J, Bhattacharya P, Huffaker D 2006 Electron. Lett. 42 121

    [46]

    Yang J, Bhattacharya P, Mi Z 2007 IEEE Trans. Electron Devices 54 2849

    [47]

    Yang J, Bhattacharya P, Wu Z 2007 IEEE Photon. Technol. Lett. 19 747

    [48]

    Yang J, Bhattacharya P 2008 Opt. Express 16 5136

    [49]

    Li L, Guimard D, Rajesh M, Arakawa Y 2008 Appl. Phys. Lett. 92 3105

    [50]

    Tanabe K, Watanabe K, Arakawa Y 2012 Sci. Rep. 2 349

    [51]

    Liu A Y, Zhang C, Norman J, Snyder A, Lubyshev D, Fastenau J M, Liu A W, Gossard A C, Bowers J E 2014 Appl. Phys. Lett. 104 041104

    [52]

    Liu A Y, Zhang C, Snyder A, Lubyshev D, Fastenau J M, Liu A W, Gossard A C, Bowers J E 2014 J. Vac. Sci. Technol. B 32 02C108

  • [1]

    Zhou Z P 2012 Si-based Optoeletronics (Beijing: Beijing University Press) (in Chinese) [周治平 2012 硅基光电子学 (北京: 北京大学出版社)]

    [2]

    Camacho-Aguilera R E, Cai Y, Patel N, Bessette J T, Romagnoli M, Kimerling L C, Michel J 2012 Opt. Express 20 11316

    [3]

    Wirths S, Geiger R, von den Driesch N, Mussler G, Stoica T, Mantl S, Ikonic Z, Luysberg M, Chiussi S, Hartmann J M, Sigg H, Faist J, Buca D, Grtzmacher D 2015 Nat. Photon. 9 88

    [4]

    D'Avezac M, Luo J W, Chanier T, Zunger A 2012 Phys. Rev. Lett. 108 027401

    [5]

    Liu H, Wang T, Jiang Q, Hogg R, Tutu F, Pozzi F, Seeds A 2011 Nat. Photon. 5 416

    [6]

    Wang T, Liu H, Lee A, Pozzi F, Seeds A 2011 Opt. Express 19 11381

    [7]

    Lee A, Jiang A, Tang M, Seeds A, Liu H 2012 Opt. Express 20 22181

    [8]

    Chen S, Tang M, Wu J, Jiang Q, Dorogan V, Benamara M, Mazur Y, Salamo G, Seeds A, Liu H 2014 Electron Lett. 50 1467

    [9]

    Kroemer H 1963 Proc. IEEE 51 1782

    [10]

    Alferov Z I, Kazarinov R 1963 181737

    [11]

    Asada M, Miyamoto Y, Suematsu Y 1986 IEEE J. Quant. Electron. 22 1915

    [12]

    Arakawa Y, Sakaki H 1982 Appl. Phys. Lett. 40 939

    [13]

    Liu G, Stintz A, Li H, Malloy K, Lester L 1999 Electron. Lett. 35 1163

    [14]

    Liu H, Hopkinson M, Harrison C, Steer M, Frith R, Sellers I, Mowbray D, Skolnick M 2003 J. Appl. Phys. 93 2931

    [15]

    Liu H, Sellers I, Badcock T, Mowbray D, Skolnick M, Groom K, Gutierrez M, Hopkinson M, Ng J, David J 2004 Appl. Phys. Lett. 85 704

    [16]

    Liu H, Sellers I, Gutierrez M, Groom K, Soong W, Hopkinson M, David J, Beanland R, Badcock T, Mowbray D 2004 J. Appl. Phys. 96 1988

    [17]

    Sugawara M, Usami M 2009 Nat. Photon. 3 30

    [18]

    Maximov M V, Ledentsov N N 2004 Dekker Encyclopedia Nanosci. Nanotechnol. 3109

    [19]

    Li S, Gong Q, Cao C, Wang X, Yan J, Wang Y, Wang H 2013 Infrared Phys. Technol. 60 216

    [20]

    Dingle R, Henry C H 1976 US3982207A

    [21]

    Hirayama H, Matsunaga K, Asada M, Suematsu Y 1994 Electron Lett. 30 142

    [22]

    Kirstaedter N, Ledentsov N N, Grundmann M, Bimberg D, Ustinov V M, Ruvimov S S, Maximov M V, Kop'ev P S, Alferov Z I, Richter U, Werner P, Gosele U, Heydenreich J 1994 Electron Lett. 30 1416

    [23]

    Wu J, Chen S, Seeds A, Liu H 2015 J. Phys. D 48 363001

    [24]

    van der Ziel J P, Dupuis R D, Logan R A, Pinzone C J 1987 Appl. Phys. Lett. 51 89

    [25]

    Choi H K, Wang C A, Karam N H 1991 Appl. Phys. Lett. 59 2633

    [26]

    Kazi Z I, Thilakan P, Egawa T, Umeno M, Jimbo T 2001 Jpn. J. Appl. Phys. 40 4903

    [27]

    Kazi Z I, Egawa T, Jimbo T, Umeno M 2000 Jpn. J. Appl. Phys. 39 3860

    [28]

    Groenert M E, Pitera A J, Ram R J, Fitzgerald E A 2003 J. Vac. Sci. Technol. B 21 1064

    [29]

    Liu A Y, Herrick R W, Ueda O, Petroff P M, Gossard A C, Bowers J E 2015 IEEE J. Quantum Electron. 21 1900708

    [30]

    Jalali B, Fathpour S 2006 J. Lightwave Techn. 24 4600

    [31]

    Rong H, Jones R, Liu A, Cohen O, Hak D, Fang A, Paniccia M 2005 Nature 433 725

    [32]

    Chen X, Li C, Tsang H K 2011 NPG Asia Materials 3 34

    [33]

    Park H, Fang A W, Kodama S, Bowers J E 2005 Opt. Express 13 9460

    [34]

    Tanabe K, Watanabe K, Arakawa Y 2012 Sci. Rep. 2 349

    [35]

    Liang D, Bowers J E 2010 Nat. Photon. 4 511

    [36]

    Wang W 1984 Appl. Phys. Lett. 44 1149

    [37]

    Fletcher R M, Wagner D K, Ballantyne J M 1984 Appl. Phys. Lett. 44 967

    [38]

    Deppe D, Holonyak J N, Nam D, Hsieh K, Jackson G, Matyi R, Shichijo H, Epler J, Chung H 1987 Appl. Phys. Lett. 51 637

    [39]

    Deppe D, Nam D, Holonyak J N, Hsieh K, Matyi R, Shichijo H, Epler J, Chung H 1987 Appl. Phys. Lett. 51 1271

    [40]

    Kaliski R, Holonyak J N, Hsieh K, Nam D, Lee J, Shichijo H, Burnham R, Epler J, Chung H 1987 Appl. Phys. Lett. 50 836

    [41]

    Hall D, Deppe D, Holonyak J N, Matyi R, Shichijo H, Epler J 1988 J. Appl. Phys. 64 2854

    [42]

    Linder K, Phillips J, Qasaimeh O, Liu X, Krishna S, Bhattacharya P, Jiang J 1999 Appl. Phys. Lett. 74 1355

    [43]

    Kazi Z I, Egawa T, Umeno M, Jimbo T 2001 J. Appl. Phys. 90 5463

    [44]

    Mi Z, Bhattacharya P, Yang J, Pipem K 2005 Electron. Lett. 41 742

    [45]

    Mi Z, Yang J, Bhattacharya P, Huffaker D 2006 Electron. Lett. 42 121

    [46]

    Yang J, Bhattacharya P, Mi Z 2007 IEEE Trans. Electron Devices 54 2849

    [47]

    Yang J, Bhattacharya P, Wu Z 2007 IEEE Photon. Technol. Lett. 19 747

    [48]

    Yang J, Bhattacharya P 2008 Opt. Express 16 5136

    [49]

    Li L, Guimard D, Rajesh M, Arakawa Y 2008 Appl. Phys. Lett. 92 3105

    [50]

    Tanabe K, Watanabe K, Arakawa Y 2012 Sci. Rep. 2 349

    [51]

    Liu A Y, Zhang C, Norman J, Snyder A, Lubyshev D, Fastenau J M, Liu A W, Gossard A C, Bowers J E 2014 Appl. Phys. Lett. 104 041104

    [52]

    Liu A Y, Zhang C, Snyder A, Lubyshev D, Fastenau J M, Liu A W, Gossard A C, Bowers J E 2014 J. Vac. Sci. Technol. B 32 02C108

  • [1] 刘宇航, 林曈, 李少波, 于文琦, 马向, 梁晓东, 恽斌峰. 可调反射器辅助的可重构微环光滤波器.  , 2023, 72(8): 084208. doi: 10.7498/aps.72.20222384
    [2] 张伊祎, 韦雪玲, 农洁, 马汉斯, 叶子阳, 徐文杰, 张振荣, 杨俊波. 基于直接二进制搜索算法设计的超紧凑In2Se3可调控功率分束器.  , 2023, 72(15): 154207. doi: 10.7498/aps.72.20230459
    [3] 熊霄, 曹启韬, 肖云峰. 铌酸锂集成光子器件的发展与机遇.  , 2023, 72(23): 234201. doi: 10.7498/aps.72.20231295
    [4] 池浪, 费洪涛, 王腾, 易建鹏, 方月婷, 夏瑞东. 基于有机半导体激光材料的高灵敏度溶液检测传感器件.  , 2016, 65(6): 064202. doi: 10.7498/aps.65.064202
    [5] 冯松, 薛斌, 李连碧, 翟学军, 宋立勋, 朱长军. 一种新型Si/SiGe/Si双异质结PIN电学调制结构的异质结能带分析.  , 2016, 65(5): 054201. doi: 10.7498/aps.65.054201
    [6] 孙运利, 王昌辉, 乐孜纯. 基于微流控光学可调谐的渐变折射率特性研究.  , 2014, 63(15): 154701. doi: 10.7498/aps.63.154701
    [7] 唐雄贵, 廖进昆, 李和平, 刘永, 刘永智. 基于热膨胀效应的可调光功率分束器设计.  , 2013, 62(2): 024218. doi: 10.7498/aps.62.024218
    [8] 李杰, 朱京平. 光波导短程透镜加工容限误差研究.  , 2012, 61(24): 244208. doi: 10.7498/aps.61.244208
    [9] 贾智鑫, 段欣, 吕婷婷, 郭亚楠, 薛文瑞. 领结形中空表面等离子体波导的传输特性.  , 2011, 60(5): 057301. doi: 10.7498/aps.60.057301
    [10] 秦杰明, 田立飞, 赵东旭, 蒋大勇, 曹建明, 丁梦, 郭振. 一维氧化锌纳米结构生长及器件制备研究进展.  , 2011, 60(10): 107307. doi: 10.7498/aps.60.107307
    [11] 陈兆震, 徐则达. 在一种新的聚合物材料上刻写正弦相位波导光栅及其特性研究.  , 2010, 59(5): 3264-3272. doi: 10.7498/aps.59.3264
    [12] 杨薇, 刘迎, 肖立峰, 杨兆祥, 潘建旋. 声光可调谐环形腔掺铒光纤激光器.  , 2010, 59(2): 1030-1034. doi: 10.7498/aps.59.1030
    [13] 郭亚楠, 薛文瑞, 张文梅. 双椭圆纳米金属棒构成的表面等离子体波导的传输特性分析.  , 2009, 58(6): 4168-4174. doi: 10.7498/aps.58.4168
    [14] 杨薇, 刘迎, 肖立峰, 高树理. 两级串联声光可调谐滤波器旁瓣抑制的研究.  , 2009, 58(1): 328-332. doi: 10.7498/aps.58.328
    [15] 邵公望, 戴亚军, 金国良. 抽运光与信号光的光强重叠因子和掺铒玻璃波导放大器的增益特性.  , 2009, 58(4): 2488-2494. doi: 10.7498/aps.58.2488
    [16] 曾维友, 谢 康, 姜海明, 陈 凯. 基于TE-TM模变换的新型相位自补偿磁光隔离器.  , 2008, 57(6): 3607-3612. doi: 10.7498/aps.57.3607
    [17] 孙一翎, 潘剑侠. 多模干涉耦合器中重叠像相干相消现象分析.  , 2007, 56(6): 3300-3305. doi: 10.7498/aps.56.3300
    [18] 於海武, 徐美健, 段文涛, 隋 展. LD波长啁啾效应与二极管抽运固体激光器性能优化.  , 2007, 56(5): 2559-2569. doi: 10.7498/aps.56.2559
    [19] 夏金松, 余金中. 一种新的基于最小平方逼近的广角光束传播方法.  , 2003, 52(3): 515-521. doi: 10.7498/aps.52.515
    [20] 姬扬, 张静娟, 姚德成, 陈岩松. 用于半导体激光器光束整形的衍射光学元件的设计研究.  , 1996, 45(12): 2027-2034. doi: 10.7498/aps.45.2027
计量
  • 文章访问数:  12282
  • PDF下载量:  971
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-09-07
  • 修回日期:  2015-09-25
  • 刊出日期:  2015-10-05

/

返回文章
返回
Baidu
map