-
In order to improve the working performances of a transient Brillouin amplifier, the dependences of the signal-noise-ratio, sensitivity, energy extraction efficiency and signal amplification factor on exponential gain G are numerically studied based on the theoretical model of transient Brillouin amplification including distributed noise, and an optimal working point of a Brillouin amplifier is obtained. Experimental verifications are performed by choosing CS2 and FC-72 as nonlinear media. A frequency-doubled Nd:YAG pulse laser is used. Results show that when the pump pulse lags behind the Stokes signal pulse by an amount of time equal to half the pulse width, Gopt can be set to be above the SBS threshold exponential gain Gth. For a collinear Brillouin amplifier, Gopt is 1.1-1.3 times Gth; while for a non-collinear structure, Gopt can be set to be over 1.3 times Gth. Nearly saturated amplification is achieved.
-
Keywords:
- transient Brillouin amplifier /
- optimum working point /
- SBS threshold exponential gain /
- delay time
[1] Gao W, Lü Z W, He W M, Zhu C Y, Dong Y K 2007 Acta Phys. Sin. 56 2693 (in Chinese) [高玮, 吕志伟, 何伟明, 朱成禹, 董永康 2007 56 2693]
[2] Bel'dyugin I M, Efimkov V F, Mikhailov S I, Zubarev I G 2005 J. Russian Laser Res. 26 1
[3] Gao W, Lü Z W, He W M, Dong Y K 2008 Acta Phys. Sin. 57 254 (in Chinese) [高玮, 吕志伟, 何伟明, 董永康 2008 57 254]
[4] Wise A, Tur M, Zadok A 2011 Opt. Express 19 21945
[5] Liu D H, Shi J W, Chen X D, Ouyang M, Gong W P 2010 Front. Phys. China 5 82
[6] Sternklar S, Glick Y, Jackel S 1992 J. Opt. Soc. Am. B 9 391
[7] Boyd R W, Rzazewski K, Narum P 1990 Phys. Rev. A 42 5514
[8] Wang C 2006 Ph. D. Dissertation (Harbin: Harbin Institute of Technology) (in Chinese) [王超 2006 博士学位论文 (哈尔滨:哈尔滨工业大学)]
[9] Erokhin A I, Kovalev V I, Faizullov F S 1986 Sov. J. Quan. Electron. 16 872
[10] Yoshida H, Kmetik V, Fujita H, Nakatsuka M, Yamanaka T, Yoshida K 1997 Appl. Opt. 36 3739
[11] Lü Z W, Ding Y C, He W M 2002 Acta Phys. Sin. 51 1286 (in Chinese) [吕志伟, 丁迎春, 何伟明 2002 51 1286]
[12] Gao W, Lü Z W, He W M, Zhu C Y 2011 Appl. Phys. B 105 317
[13] Lü Z W, Wang S Y, Lin D Y 2008 Laser Part. Beams 26 315
[14] Gao W, Lü Z W, Wang S Y, He W M, Hasi W L J 2010 Laser Part. Beams 28 179
[15] Lü Z W, Gao W, He W M, Zhang Z, Hasi W L J 2009 Opt. Express 17 10675
-
[1] Gao W, Lü Z W, He W M, Zhu C Y, Dong Y K 2007 Acta Phys. Sin. 56 2693 (in Chinese) [高玮, 吕志伟, 何伟明, 朱成禹, 董永康 2007 56 2693]
[2] Bel'dyugin I M, Efimkov V F, Mikhailov S I, Zubarev I G 2005 J. Russian Laser Res. 26 1
[3] Gao W, Lü Z W, He W M, Dong Y K 2008 Acta Phys. Sin. 57 254 (in Chinese) [高玮, 吕志伟, 何伟明, 董永康 2008 57 254]
[4] Wise A, Tur M, Zadok A 2011 Opt. Express 19 21945
[5] Liu D H, Shi J W, Chen X D, Ouyang M, Gong W P 2010 Front. Phys. China 5 82
[6] Sternklar S, Glick Y, Jackel S 1992 J. Opt. Soc. Am. B 9 391
[7] Boyd R W, Rzazewski K, Narum P 1990 Phys. Rev. A 42 5514
[8] Wang C 2006 Ph. D. Dissertation (Harbin: Harbin Institute of Technology) (in Chinese) [王超 2006 博士学位论文 (哈尔滨:哈尔滨工业大学)]
[9] Erokhin A I, Kovalev V I, Faizullov F S 1986 Sov. J. Quan. Electron. 16 872
[10] Yoshida H, Kmetik V, Fujita H, Nakatsuka M, Yamanaka T, Yoshida K 1997 Appl. Opt. 36 3739
[11] Lü Z W, Ding Y C, He W M 2002 Acta Phys. Sin. 51 1286 (in Chinese) [吕志伟, 丁迎春, 何伟明 2002 51 1286]
[12] Gao W, Lü Z W, He W M, Zhu C Y 2011 Appl. Phys. B 105 317
[13] Lü Z W, Wang S Y, Lin D Y 2008 Laser Part. Beams 26 315
[14] Gao W, Lü Z W, Wang S Y, He W M, Hasi W L J 2010 Laser Part. Beams 28 179
[15] Lü Z W, Gao W, He W M, Zhang Z, Hasi W L J 2009 Opt. Express 17 10675
Catalog
Metrics
- Abstract views: 6826
- PDF Downloads: 573
- Cited By: 0