-
The properties of the propagating field in multimode photonic crystal waveguides exhibiting no photonic band gaps with triangular lattices are investigated. By the effective refractive index method, these structures are regarded as three layer planar dielectric waveguides. And the multimode interference effect is numerically analyzed and simulated based on the self-imaging principle. The results show that the field can propagates effectively and resembles index-guided mode due to the combination of total internal reflection and distribution Bragg reflection. High transmission region shifts toward the shorter wavelength region, the bandwidth and the transmissivity increase with the increase of filling ratio, which provides a theoretical reference for selecting an appropriate filling ratio in practical applications.
-
Keywords:
- multimode photonic crystal waveguide /
- total internal reflection /
- filling ratio /
- finite-difference time domain method
[1] Yablonovitch E 1987 Phys. Rev. Lett. 58 2059
[2] [3] John S 1987 Phys. Rev. Lett. 58 2486
[4] Liu N H 1997 Phys. Rev. B 55 4097
[5] [6] Mekis A 1996 Phys. Rev. Lett. 77 3787
[7] [8] Tang H X, Zuo Y H, Yi J Z, Wang Q M 2007 Chin. Phys. 16 2011
[9] [10] Soldano L B, Pennings E C M 1995 IEEE J. Lightwave Technol. 13 615
[11] [12] Zhang Y, Li Z J, Li B J 2006 Opt. Express 14 2679
[13] [14] Yu T B, Wang M H, Jiang X Q, Yang J Y 2006 Acta Phys. Sin. 55 1851 (in Chinese) [于天宝、王明华、江晓清、杨建义2006 55 1851]
[15] [16] [17] Park I, Lee H S, Kim H J, Moon K M, Lee S G, O B H, Park S G, Lee E H 2004 Opt. Express 12 3599
[18] [19] Chen H B, Xu Y, He J L, Hong Z 2009 Opt. Commun. 282 3626
[20] [21] Yu T B, Jiang X Q, Yang J Y, Zhou H F, Liao Q H, Wang M H 2007 Phys. Lett. A 369 167
[22] Adibi A, Xu Y, Lee P K, Yariv A, Scherer A 2001 Phys. Rev. B 64 033308
[23] [24] Zhang W F, Liu J H, Zhao Wei 2009 IEEE Photo. Tech. Lett. 21 739
[25] [26] Liu T, Zakharian A R, Fallahi M, Moloney J V, Mansuripur M 2004 IEEE J. Lightwave Technol. 22 2842
[27] [28] [29] Ren G, Zheng W H, Wang K, Du X Y, Xing M X, Chen L H 2008 Chin. Phys. B 17 2553
[30] [31] Tanaka Y, Nakamura H, Sugimoto Y, Ikeda N, Asakawa K, Inoue K 2005 IEEE J. Quantum Elecron. 41 76
[32] Qiu M 2002 Appl. Phys. Lett. 81 1163
[33] [34] Johnson S G, Joannopoulos J D 2001 Opt. Express 8 173
[35] -
[1] Yablonovitch E 1987 Phys. Rev. Lett. 58 2059
[2] [3] John S 1987 Phys. Rev. Lett. 58 2486
[4] Liu N H 1997 Phys. Rev. B 55 4097
[5] [6] Mekis A 1996 Phys. Rev. Lett. 77 3787
[7] [8] Tang H X, Zuo Y H, Yi J Z, Wang Q M 2007 Chin. Phys. 16 2011
[9] [10] Soldano L B, Pennings E C M 1995 IEEE J. Lightwave Technol. 13 615
[11] [12] Zhang Y, Li Z J, Li B J 2006 Opt. Express 14 2679
[13] [14] Yu T B, Wang M H, Jiang X Q, Yang J Y 2006 Acta Phys. Sin. 55 1851 (in Chinese) [于天宝、王明华、江晓清、杨建义2006 55 1851]
[15] [16] [17] Park I, Lee H S, Kim H J, Moon K M, Lee S G, O B H, Park S G, Lee E H 2004 Opt. Express 12 3599
[18] [19] Chen H B, Xu Y, He J L, Hong Z 2009 Opt. Commun. 282 3626
[20] [21] Yu T B, Jiang X Q, Yang J Y, Zhou H F, Liao Q H, Wang M H 2007 Phys. Lett. A 369 167
[22] Adibi A, Xu Y, Lee P K, Yariv A, Scherer A 2001 Phys. Rev. B 64 033308
[23] [24] Zhang W F, Liu J H, Zhao Wei 2009 IEEE Photo. Tech. Lett. 21 739
[25] [26] Liu T, Zakharian A R, Fallahi M, Moloney J V, Mansuripur M 2004 IEEE J. Lightwave Technol. 22 2842
[27] [28] [29] Ren G, Zheng W H, Wang K, Du X Y, Xing M X, Chen L H 2008 Chin. Phys. B 17 2553
[30] [31] Tanaka Y, Nakamura H, Sugimoto Y, Ikeda N, Asakawa K, Inoue K 2005 IEEE J. Quantum Elecron. 41 76
[32] Qiu M 2002 Appl. Phys. Lett. 81 1163
[33] [34] Johnson S G, Joannopoulos J D 2001 Opt. Express 8 173
[35]
Catalog
Metrics
- Abstract views: 9634
- PDF Downloads: 890
- Cited By: 0