-
Different Nb doped Ca0.9Yb0.1Mn1-xNbxO3 ceramics are successfully synthesized by the conventional solid state reaction technique. The crystal structures are of orthorhombic phase, belonging to the Pnma space group. The lattice constant and the volume increase with the increase of Nb content. Relatively high density is around 97%. Scanning electron microscope (SEM) images show that samples are well crystallized. The electrical resistivity and the Seebeck coefficient are measured in a temperature range between 300 and 1100 K. At low temperatures, the electrical resistivity shows a semiconductive-like behavior. At high temperatures, the electrical resistivity exhibits a typical metallic conductive behavior. The semiconductor-metal transition temperature shifts toward a higher temperature with the increase of Nb content. The electrical resistivity increases with Nb dopant, except that the electrical resistivity for x=0.03 is slight lower than that fox x=0.00 sample at high temperature range. This conductivity behavior can be understood as the fact that though Nb doping can introduce more carriers, it also distorts the MnO6 octahedra, and causes the carrier localization. The values of Seebeck coefficient are all negative, indicative of an n-type electrical conduction. The absolute value of Seebeck coefficient increases with temperature increasing, but decreases with the increase of Nb content. The highest power factor is obtained to be 297 W/K2m at 497 K in the x=0.00 sample, and the power factor of this sample is less independent of temperature in the whole measured temperature range.
-
Keywords:
- CaMnO3 ceramics /
- electrical resistivity /
- Seebeck coefficient
[1] Terasaki I, Sasago Y, Uchinokura K 1997 Phys. Rev. B 56 R12685
[2] Chen X Y, Xu X F, Hu R X, Ren Z, Xu Z A, Cao G H 2007 Acta Phys. Sin. 56 1627 (in Chinese) [陈晓阳、 徐象繁、 胡荣星、 任 之、 许祝安、 曹光旱 2007 56 1627]
[3] [4] [5] Wang H C, Wang C L, Su W B, Liu J, Zhao Y, Peng H, Zhang J L, Zhao M L, Li J C, Yin N, Mei L M 2010 Acta Phys.Sin. 59 529 (in Chinese) [王洪超、 王春雷、 苏文斌、 刘 剑、 赵 越、 彭 华、 张家良、 赵明磊、 李吉超、 尹 娜、 梅良模 2010 59 529]
[6] Deng S K, Tang X F, Tang R S 2009 Chin. Phys. B 18 3084
[7] [8] [9] Funahashi R, Matsubara I, Ikuta H, Takeuchi T, Mizutani U, Sodeoka S 2000 J. Appl. Phys. 39 L1127
[10] [11] Funahashi R, Matsubara I 2001 Appl. Phys. Lett. 79 362
[12] Wang H C, Wang C L, Su W B, Liu J, Zhao Y, Peng H, Zhang J L, Zhao M L, Li J C, Yin N, Mei L M 2010 Mater. Res. Bull. 45 809
[13] [14] [15] Wang H C, Wang C L, Su W B, Liu J, Peng H, Zhang J L, Zhao M L, Li J C, Yin N, Mei L M 2009 J. Alloys Compd. 486 693
[16] Wang Y, Sui Y, Su W H 2008 J. Appl. Phys. 104 093703
[17] [18] Xu G J, Funahashi R, Pu Q R, Liu B, Tao R H, Wang G S, Ding Z J 2004 Solid State Ionics 171 147
[19] [20] Bocher L, Aguirre M H, Logvinovich D, Shkabko A, Robert R, Trottmann M, Weidenkaff A 2008 Inorg. Chem. 47 8077
[21] [22] Huang X Y, Miyazaki Y, Kajitani T 2008 Solid State Commun. 145 132
[23] [24] [25] Park J W, Kwak D H, Yoon S H, Choi S C 2009 J. Alloys Compd. 487 550
[26] [27] Ohtaki M, Araki K, Yamamoto K 2009 J. Electron. Mater. 38 1234
[28] Kosuga A, Isse Y, Wang Y F, Koumoto K, Funahashi R 2009 J. Appl. Phys. 105 093717
[29] -
[1] Terasaki I, Sasago Y, Uchinokura K 1997 Phys. Rev. B 56 R12685
[2] Chen X Y, Xu X F, Hu R X, Ren Z, Xu Z A, Cao G H 2007 Acta Phys. Sin. 56 1627 (in Chinese) [陈晓阳、 徐象繁、 胡荣星、 任 之、 许祝安、 曹光旱 2007 56 1627]
[3] [4] [5] Wang H C, Wang C L, Su W B, Liu J, Zhao Y, Peng H, Zhang J L, Zhao M L, Li J C, Yin N, Mei L M 2010 Acta Phys.Sin. 59 529 (in Chinese) [王洪超、 王春雷、 苏文斌、 刘 剑、 赵 越、 彭 华、 张家良、 赵明磊、 李吉超、 尹 娜、 梅良模 2010 59 529]
[6] Deng S K, Tang X F, Tang R S 2009 Chin. Phys. B 18 3084
[7] [8] [9] Funahashi R, Matsubara I, Ikuta H, Takeuchi T, Mizutani U, Sodeoka S 2000 J. Appl. Phys. 39 L1127
[10] [11] Funahashi R, Matsubara I 2001 Appl. Phys. Lett. 79 362
[12] Wang H C, Wang C L, Su W B, Liu J, Zhao Y, Peng H, Zhang J L, Zhao M L, Li J C, Yin N, Mei L M 2010 Mater. Res. Bull. 45 809
[13] [14] [15] Wang H C, Wang C L, Su W B, Liu J, Peng H, Zhang J L, Zhao M L, Li J C, Yin N, Mei L M 2009 J. Alloys Compd. 486 693
[16] Wang Y, Sui Y, Su W H 2008 J. Appl. Phys. 104 093703
[17] [18] Xu G J, Funahashi R, Pu Q R, Liu B, Tao R H, Wang G S, Ding Z J 2004 Solid State Ionics 171 147
[19] [20] Bocher L, Aguirre M H, Logvinovich D, Shkabko A, Robert R, Trottmann M, Weidenkaff A 2008 Inorg. Chem. 47 8077
[21] [22] Huang X Y, Miyazaki Y, Kajitani T 2008 Solid State Commun. 145 132
[23] [24] [25] Park J W, Kwak D H, Yoon S H, Choi S C 2009 J. Alloys Compd. 487 550
[26] [27] Ohtaki M, Araki K, Yamamoto K 2009 J. Electron. Mater. 38 1234
[28] Kosuga A, Isse Y, Wang Y F, Koumoto K, Funahashi R 2009 J. Appl. Phys. 105 093717
[29]
Catalog
Metrics
- Abstract views: 6614
- PDF Downloads: 829
- Cited By: 0