-
Blind demodulation (breaking) of chaotic direct sequence spread spectrum (CD3S) signals is a challenging and leading issue under multipath fading channel in the field of chaotic communication. Until now, there are neither equalization methods to remove the impact of the channel, nor the immediate breaking methods. Based on the existing study, the breakability of CD3S signals is analyzed under multipath fading channel by using unscented Kalman filter (UKF) chaotic fitting in this paper. Beginning with the state space equation for the CD3S signals in UKF chaotic fitting, the channel influence on the tracking error is analyzed in the process of UKF chaotic fitting, then the range of the message state estimation is derived, and finally a sufficient condition theorem is proposed for the CD3S signals to be broken. Simulation results show that CD3S signals can be broken successfully under the proposed condition with excellent performance of bit error rate (BER), no matter whether the channel characteristic is either time-invariant or time-variant.
-
Keywords:
- chaotic direct sequence spread spectrum secure communication /
- breaking /
- multi-path fading channel /
- unscented Kalman filter
[1] Hu J F, Guo J B 2008 Acta Phys. Sin. 57 1477(in Chinese)[胡进峰、郭静波 2008 57 1477]
[2] Wang Y C, Zhao Q C, Wang A B 2008 Chin. Phys. B 17 2373
[3] Mou J, Tao C, Du G H 2003 Chin. Phys. 12 381
[4] Li N, Li J F 2008 Acta Phys. Sin. 57 6093 (in Chinese) [李 农、李建芬 2008 57 6093]
[5] Sun L, Jiang D P 2006 Acta Phys. Sin. 55 3283 (in Chinese) [孙 琳、姜德平 2006 55 3283]
[6] Cuomo K M, Oppenheim A V, Strogatz S H 1993 IEEE Trans. Circuits Syst. II 40 626
[7] Li J F, Li N 2002 Chin. Phys. 11 1124
[8] Dedieu H, Ckennedy M P, Hasler M 1993 IEEE Trans. Circuits Syst. II 40 634
[9] Zhang J S, Xiao X C, 2001 Acta Phys. Sin. 50 2121 (in Chinese) [张家树、肖先赐 2001 50 2121]
[10] Wang M J, Wang X Y, 2009 Acta Phys. Sin. 58 1467 (in Chinese) [王明军、王兴元 2009 58 1467]
[11] Zhou W J, Yu S M, 2009 Acta Phys. Sin. 58 113 (in Chinese) [周武杰、禹思敏 2009 58 113]
[12] Yan S L 2005 Acta Phys. Sin. 54 2000 (in Chinese) [颜森林 2005 54 2000]
[13] Hu M F, Xu Z Y 2007 Chin. Phys. 16 3231
[14] Li C Y, Li X H, Deng F G, Zhou H Y 2008 Chin. Phys.B 17 2352
[15] Wang F P, Wang Z J, Guo J B 2002 Acta Phys.Sin. 51 474 (in Chinese) [汪芙平、王赞基、郭静波 2002 51 474]
[16] Yang T, Yang L B, Yang C M 1998 Phys. Lett. A 247 105
[17] Alvarez G, Montoya F, Romera M, Pastor G 2004 Chaos, Solitons and Fractal 21 783
[18] Yang T, Yang B L, Yang C M 1998 IEEE Trans. Circuits Syst.I 45 1062
[19] Parlitz U, Lakshmanan S 1994 Phys Lett. A 188 146
[20] Heidari-Bateni G, McGillem C D 1994 IEEE Trans. Communications 42 1524
[21] Zhou P 2007 Chin. Phys. 16 1263
[22] Xiao Y Z, Xu W 2007 Chin. Phys. 16 1597
[23] Li Z, Han C Z 2002 Chin. Phys. 11 666
[24] Li G H, Zhou S P, Xu D M 2004 Chin. Phys. 13 168
[25] Tsatsanis M K, Proakis G B 1997 IEEE Trans. Signal Processing 45 1241
[26] Hwang Y, Papadopoulos H C 2004 IEEE Trans. Signal Processing 52 2637
[27] Zhang J S 2006 Chin. Phys. Lett. 23 3187
[28] Zhu Z W, Leung H 2001 IEEE Trans. Circuits Syst.I 48 979
[29] Zhu Z W, Leung H 2002 IEEE Trans. Circuits Syst.I 49 170
[30] Vural C, Cetinel G 2010 Digital Signal Processing 20 201
[31] Xie N, Leung H 2005 IEEE Trans. Neural Networks 16 709
[32] Fang Y, Chow T W S 1999 IEEE Trans. Neural Networks 10 918
[33] Kandepu R, Foss B, Imsland L 2008 J. Process Control 18 753
[34] King P, Venkatesan R, Li C 2008 Proc IEEE Globecom 2008 Nov 30- Dec 4, 2008 p1
[35] Amitay N 1992 IEEE Trans. Vehicular Technology 41 337
-
[1] Hu J F, Guo J B 2008 Acta Phys. Sin. 57 1477(in Chinese)[胡进峰、郭静波 2008 57 1477]
[2] Wang Y C, Zhao Q C, Wang A B 2008 Chin. Phys. B 17 2373
[3] Mou J, Tao C, Du G H 2003 Chin. Phys. 12 381
[4] Li N, Li J F 2008 Acta Phys. Sin. 57 6093 (in Chinese) [李 农、李建芬 2008 57 6093]
[5] Sun L, Jiang D P 2006 Acta Phys. Sin. 55 3283 (in Chinese) [孙 琳、姜德平 2006 55 3283]
[6] Cuomo K M, Oppenheim A V, Strogatz S H 1993 IEEE Trans. Circuits Syst. II 40 626
[7] Li J F, Li N 2002 Chin. Phys. 11 1124
[8] Dedieu H, Ckennedy M P, Hasler M 1993 IEEE Trans. Circuits Syst. II 40 634
[9] Zhang J S, Xiao X C, 2001 Acta Phys. Sin. 50 2121 (in Chinese) [张家树、肖先赐 2001 50 2121]
[10] Wang M J, Wang X Y, 2009 Acta Phys. Sin. 58 1467 (in Chinese) [王明军、王兴元 2009 58 1467]
[11] Zhou W J, Yu S M, 2009 Acta Phys. Sin. 58 113 (in Chinese) [周武杰、禹思敏 2009 58 113]
[12] Yan S L 2005 Acta Phys. Sin. 54 2000 (in Chinese) [颜森林 2005 54 2000]
[13] Hu M F, Xu Z Y 2007 Chin. Phys. 16 3231
[14] Li C Y, Li X H, Deng F G, Zhou H Y 2008 Chin. Phys.B 17 2352
[15] Wang F P, Wang Z J, Guo J B 2002 Acta Phys.Sin. 51 474 (in Chinese) [汪芙平、王赞基、郭静波 2002 51 474]
[16] Yang T, Yang L B, Yang C M 1998 Phys. Lett. A 247 105
[17] Alvarez G, Montoya F, Romera M, Pastor G 2004 Chaos, Solitons and Fractal 21 783
[18] Yang T, Yang B L, Yang C M 1998 IEEE Trans. Circuits Syst.I 45 1062
[19] Parlitz U, Lakshmanan S 1994 Phys Lett. A 188 146
[20] Heidari-Bateni G, McGillem C D 1994 IEEE Trans. Communications 42 1524
[21] Zhou P 2007 Chin. Phys. 16 1263
[22] Xiao Y Z, Xu W 2007 Chin. Phys. 16 1597
[23] Li Z, Han C Z 2002 Chin. Phys. 11 666
[24] Li G H, Zhou S P, Xu D M 2004 Chin. Phys. 13 168
[25] Tsatsanis M K, Proakis G B 1997 IEEE Trans. Signal Processing 45 1241
[26] Hwang Y, Papadopoulos H C 2004 IEEE Trans. Signal Processing 52 2637
[27] Zhang J S 2006 Chin. Phys. Lett. 23 3187
[28] Zhu Z W, Leung H 2001 IEEE Trans. Circuits Syst.I 48 979
[29] Zhu Z W, Leung H 2002 IEEE Trans. Circuits Syst.I 49 170
[30] Vural C, Cetinel G 2010 Digital Signal Processing 20 201
[31] Xie N, Leung H 2005 IEEE Trans. Neural Networks 16 709
[32] Fang Y, Chow T W S 1999 IEEE Trans. Neural Networks 10 918
[33] Kandepu R, Foss B, Imsland L 2008 J. Process Control 18 753
[34] King P, Venkatesan R, Li C 2008 Proc IEEE Globecom 2008 Nov 30- Dec 4, 2008 p1
[35] Amitay N 1992 IEEE Trans. Vehicular Technology 41 337
Catalog
Metrics
- Abstract views: 8339
- PDF Downloads: 799
- Cited By: 0