-
The crystal structure, magnetism and transport properties of a series alloys from Co2CrGa to Cr2CoGa (Co50-xCrx+25Ga25, x=0—25) have been investigated by the experimental and KKR-CPA-LDA calculation methods. Substituting Cr for Co atoms, the crystal structure changes from L21 type to Hg2CuTi structure, which make, the lattice parameters increase about 0.69% linearly. Also, the ferromagnetic coupling turns to anti-ferromagnetic coupling, that makes the magnetic moment linearly decrease from 3.06μB to nearly zero. Through ab initio study of CPA, it has been found that the extraneous Cr atom at the A site couples anti-ferromagnetically with the Cr atom originally situated at B site with a nearly equal magnitude of magnetic moment, and the magnetic moment of Co atoms occupying the C site decreases from 0.60μB to 0.21μB through the whole substituting process. Based on the results of magnetic measurement and calculation, about 20% atomic disorder in the alloy Cr2CoGa has been confirmed, which is consistent with the observation of the X-ray examination. It is interesting that a non-linear "middle component phenomenon" has been observed in the composition dependence of both Curie temperature and the electrical resistivity. The related discussions is based on the magnetic environment change surrounding the magnetic atoms.
-
Keywords:
- CrCoGa /
- Hesuler alloy /
- KKR-CPA-LDA calculation interaction
[1] Zhang M, Hu H N, Liu G D, Cui Y T, Chen J L, Wu G H, Zhang X X, Xiao G 2004 J. Magn. Magn. Matter. 277 130
[2] Luo H Z, Ma L, Zhu Z Y, Wu G H, Liu H Y, Qu J P, Li Y G 2008 Physica. B 403 1797
[3] Umetsu R Y, Kobayashi K, Kainuma R, Fujita A, Fujita A, Fukamich K, Ishida K, Sakuma A 2004 Appl. Phys. Lett. Matter. 85 2011
[4] Nakatani T M, Gercsi Z, Rajanikanth A, Takahashi Y K, Hono K 2008 J. Phys. D:Appl. Phys. 41 225002
[5] Webster P J, 1969 Contemp. Phys. 10 559
[6] Graf T, Casper F Winterlik J, Balke B, Fecher G H, Felser C 2009 Z. Anorg. Allg. Chem. 635 976
[7] Ogura M, Akai H 2007 J. Phys.:Condens. Mat. 19 365215
[8] Kubler J, Williams A R, Sommers C B 1983 Phys. Rev. B 28 1745
[9] Feng L, Zhu Z Y, Zhu W, Liu E K, Tang X D, Qian J F, Wu G H, Meng F B, Liu H Y, Luo H Z, Li Y X 2010 Acta Phys. Sin. 59 6575
[10] Liu G D, Chen J L, Liu Z H, Dai X F, Wu G H, Zhang B, Zhang X X 2005 Appl. Phys. Lett. 87 262504
[11] Sebarski A, Neumann M, Schneider B 2001 J. Phys.:Condens. Mat. 13 5515
[12] Feng L, Ma L, Zhu Z Y, Zhu W, Liu E K, Chen J L, Wu G H, Meng F B, Liu H Y, Luo H Z, Li Y X 2010 J. Appl. Phys. 107 013913
-
[1] Zhang M, Hu H N, Liu G D, Cui Y T, Chen J L, Wu G H, Zhang X X, Xiao G 2004 J. Magn. Magn. Matter. 277 130
[2] Luo H Z, Ma L, Zhu Z Y, Wu G H, Liu H Y, Qu J P, Li Y G 2008 Physica. B 403 1797
[3] Umetsu R Y, Kobayashi K, Kainuma R, Fujita A, Fujita A, Fukamich K, Ishida K, Sakuma A 2004 Appl. Phys. Lett. Matter. 85 2011
[4] Nakatani T M, Gercsi Z, Rajanikanth A, Takahashi Y K, Hono K 2008 J. Phys. D:Appl. Phys. 41 225002
[5] Webster P J, 1969 Contemp. Phys. 10 559
[6] Graf T, Casper F Winterlik J, Balke B, Fecher G H, Felser C 2009 Z. Anorg. Allg. Chem. 635 976
[7] Ogura M, Akai H 2007 J. Phys.:Condens. Mat. 19 365215
[8] Kubler J, Williams A R, Sommers C B 1983 Phys. Rev. B 28 1745
[9] Feng L, Zhu Z Y, Zhu W, Liu E K, Tang X D, Qian J F, Wu G H, Meng F B, Liu H Y, Luo H Z, Li Y X 2010 Acta Phys. Sin. 59 6575
[10] Liu G D, Chen J L, Liu Z H, Dai X F, Wu G H, Zhang B, Zhang X X 2005 Appl. Phys. Lett. 87 262504
[11] Sebarski A, Neumann M, Schneider B 2001 J. Phys.:Condens. Mat. 13 5515
[12] Feng L, Ma L, Zhu Z Y, Zhu W, Liu E K, Chen J L, Wu G H, Meng F B, Liu H Y, Luo H Z, Li Y X 2010 J. Appl. Phys. 107 013913
Catalog
Metrics
- Abstract views: 8466
- PDF Downloads: 584
- Cited By: 0