-
Combining the observer and adaptive method, chaos synchronization is realized for a class of the perturbed chaotic systems with unknown parameters. Lyapunov stability theory and Barbalat lemma are adopted to design observer for achieving chaos synchronization. This method has fewer constraints and can be applied to many chaotic systems. Numerical simulations of representative chaotic systems further verify the validity of the proposed method.
-
Keywords:
- chaotic system /
- external perturbation /
- synchronization /
- observer method
[1] Pecora L M, Carroll T L 1990 Phys.Rev. Lett. 64 821
[2] Kocarev L, Parlitz U 1995 Phys.Rev. Lett. 74 5208
[3] Huang D B 2005 Phys.Rev. E 71 037203
[4] Wu Y, Zhou X B, Chen J, Hui B 2009 Chaos Solitons Fract. 42 1812
[5] Zhang L P, Jiang H B, Bi Q S 2010 Chin. Phys. 19 010507
[6] Liu D, Yan X M 2009 Acta Phys. Sin. 58 3747 (in Chinese) [刘 丁、闫晓妹 2009 58 3747]
[7] Feng J W, He L, Xu C, Francis A, Wu G 2010 Commun. Nonlinear Sci. Numer. Simul. 15 2546
[8] GaoT G, Chen Z Q, Yuan Z Z, Gu Q L 2004 Acta Phys.Sin. 53 1305(in Chinese)[高铁杠、陈增强、袁著祉、顾巧论 2004 53 1305]
[9] Liu F, Ren Y, Shan X M, Qiu Z L 2001 Chin. Phys. 10 0606
[10] Hua C C, Guan X P 2004 Chin. Phys. 13 1391
[11] Hua C C, Guan X P, Li X L, Shi P 2004 Chaos Solitons Fract. 22 103
[12] Guan X P, He Y H, Fan Z P 2003 Acta Phys.Sin. 52 276(in Chinese)[关新平、何宴辉、范正平2003 52 276]
[13] Chen J, Zhang T P 2006 Acta Phys. Sin. 55 3928 (in Chinese)[陈 晶、张天平2006 55 3928]
[14] Bowong S, Kakmeni F.M. M, Fotsin H 2006 Phys. Lett. A 355 193
[15] Zhu F L 2008 Phys. Lett. A 372 223
[16] Zhu F L 2009 Chaos Solitons Fract. 40 2384
[17] Wang J Z, Chen Z Q, Yuan Z Z 2006 Chin. Phys. 15 1216
-
[1] Pecora L M, Carroll T L 1990 Phys.Rev. Lett. 64 821
[2] Kocarev L, Parlitz U 1995 Phys.Rev. Lett. 74 5208
[3] Huang D B 2005 Phys.Rev. E 71 037203
[4] Wu Y, Zhou X B, Chen J, Hui B 2009 Chaos Solitons Fract. 42 1812
[5] Zhang L P, Jiang H B, Bi Q S 2010 Chin. Phys. 19 010507
[6] Liu D, Yan X M 2009 Acta Phys. Sin. 58 3747 (in Chinese) [刘 丁、闫晓妹 2009 58 3747]
[7] Feng J W, He L, Xu C, Francis A, Wu G 2010 Commun. Nonlinear Sci. Numer. Simul. 15 2546
[8] GaoT G, Chen Z Q, Yuan Z Z, Gu Q L 2004 Acta Phys.Sin. 53 1305(in Chinese)[高铁杠、陈增强、袁著祉、顾巧论 2004 53 1305]
[9] Liu F, Ren Y, Shan X M, Qiu Z L 2001 Chin. Phys. 10 0606
[10] Hua C C, Guan X P 2004 Chin. Phys. 13 1391
[11] Hua C C, Guan X P, Li X L, Shi P 2004 Chaos Solitons Fract. 22 103
[12] Guan X P, He Y H, Fan Z P 2003 Acta Phys.Sin. 52 276(in Chinese)[关新平、何宴辉、范正平2003 52 276]
[13] Chen J, Zhang T P 2006 Acta Phys. Sin. 55 3928 (in Chinese)[陈 晶、张天平2006 55 3928]
[14] Bowong S, Kakmeni F.M. M, Fotsin H 2006 Phys. Lett. A 355 193
[15] Zhu F L 2008 Phys. Lett. A 372 223
[16] Zhu F L 2009 Chaos Solitons Fract. 40 2384
[17] Wang J Z, Chen Z Q, Yuan Z Z 2006 Chin. Phys. 15 1216
Catalog
Metrics
- Abstract views: 8444
- PDF Downloads: 822
- Cited By: 0