Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

A heterogeneous computing algorithm for two-dimensional unstable manifolds of time-continuous systems

Li Qing-Du Tan Yu-Ling Yang Fang-Yan

Citation:

A heterogeneous computing algorithm for two-dimensional unstable manifolds of time-continuous systems

Li Qing-Du, Tan Yu-Ling, Yang Fang-Yan
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Two-dimensional manifolds usually contain many nonlinear behaviors in complicate structures, which implies that much numerical calculation must be done during computing. Therefore, how to accomplish the work efficiently is a key problem. Since today’s computers tend to heterogeneous platforms including multi-core CPUs and general purpose GPUs, this paper proposes a fast manifold computing algorithm, which is not only of high precision and versatility, but also very suited to the new generation of computers. The algorithm contains two kinds of computation: extending trajectories and generating triangles. The former is large and simple, which is suitable for GPU; the later is small and complicate, which is suitable for CPU. The computation for the stable manifold of the Lorenz system at the origin shows that this algorithm ensures the best performance of heterogeneous platforms and improve the computing speed greatly.
    [1]

    Doedel E J, Champneys A R 1997 ftp://ftp.cs.concordia.ca/pub/doedel/auto/

    [2]

    Krauskopf B, Osinga H M 2003 SIAM J. Appl. Dyn. Sys. 2 546

    [3]

    Guckenheimer J, Vladimirsky A A 2004 SIAM J Appli. Dyn. Sys. 3 232

    [4]

    Henderson M 2005 SIAM Journal on Applied Dynamical Systems 4 832

    [5]

    Krauskopf B, Osinga H 2005 Int. J. Bifurcation and Chaos 15 763

    [6]

    Li Q D, Yang X S 2005 Computational Physics 22 549 (in Chinese) [李清都、杨晓松2005计算物理22 549]

    [7]

    Li Q D, Yang X S 2010 Acta Phys. Sin. 59 1416(in Chinese) [李清都、杨晓松 2010 59 1416]

    [8]

    Kirk D, Hwu W 2010 Programming Massively Parallel Processors (Burlington: Elsevier)

    [9]

    He W P, Feng G L, Gao X Q, Chou J F 2006 Acta Phys。 Sin. 55 3175 (in Chinese) [何文平、 封国林、 高新全、 丑纪范 2006 55 3175]

    [10]

    Li L X, Peng H P, Yang Y X, Wang X D 2007 Acta Phys. Sin. 56 51 (in Chinese) [李丽香、 彭海朋、 杨义先、 王向东 2007 56 51]

    [11]

    Gao F, Li Z Q, Tong H Q 2008 Chin. Phys. B 17 1196

    [12]

    Zheng Y, Zhang X D 2010 Chin. Phys. B 19 010505

    [13]

    Yu J Z, Su N, Vincent T L 1998 Acta Phys. Sin. 47 397 (in Chinese) [余建祖 1998 47 397]

    [14]

    Li S H, Tian Y P 2003 Chin. Phys. 12 590

    [15]

    Niu Y J, Xu W, Rong H W,Wang L, Feng J Q 2009 Acta Phys. Sin. 58 2983 (in Chinese)

    [16]

    Li X J Xu Z Y Xie Q C Wang B 2010 Acta Phys. Sin. 59 1532 (in Chinese) [李小娟、徐振源、谢青春、 王 兵 2010 59 1532]

    [17]

    Giuseppe G 2008 Chin. Phys. B 17 3247

    [18]

    Chen G P, Hao J B 2009 Acta Phys. Sin. 58 2914 (in Chinese) [陈光平、 郝加波 2009 58 2914]

    [19]

    Wang X Y, Wang M J 2007 Acta Phys. Sin. 56 5136 (in Chinese) [王兴元、王明军 2007 56 5136]

    [20]

    Han X J, Jiang B, Bi Q S 2009 Acta Phys. Sin. 58 6006 (in Chinese) [韩修静、江 波、毕勤胜 2009 58 6006]

    [21]

    Zhang R X, Yang S P 2009 Chin. Phys. B 18 3295

    [22]

    Zhao L D, Hu J B, Liu X H 2010 Acta Phys. Sin. 59 2305 (in Chinese) [赵灵冬、 胡建兵、刘旭辉 2010 59 2305]

    [23]

    Cang S J, Chen Z Q, Wu W J 2009 Chin. Phys. B 18 1792

    [24]

    Wang G Y, Zheng Y, Liu J B 2007 Acta Phys. Sin. 56 3113 (in Chinese) [王光义、 郑 艳、 刘敬彪 2007 56 3113]

    [25]

    Hao J H, Sun Z H, Xu H B 2007 Acta Phys. Sin. 56 6857 (in Chinese) [郝建红、 孙志华、 许海波 2007 56 6857]

  • [1]

    Doedel E J, Champneys A R 1997 ftp://ftp.cs.concordia.ca/pub/doedel/auto/

    [2]

    Krauskopf B, Osinga H M 2003 SIAM J. Appl. Dyn. Sys. 2 546

    [3]

    Guckenheimer J, Vladimirsky A A 2004 SIAM J Appli. Dyn. Sys. 3 232

    [4]

    Henderson M 2005 SIAM Journal on Applied Dynamical Systems 4 832

    [5]

    Krauskopf B, Osinga H 2005 Int. J. Bifurcation and Chaos 15 763

    [6]

    Li Q D, Yang X S 2005 Computational Physics 22 549 (in Chinese) [李清都、杨晓松2005计算物理22 549]

    [7]

    Li Q D, Yang X S 2010 Acta Phys. Sin. 59 1416(in Chinese) [李清都、杨晓松 2010 59 1416]

    [8]

    Kirk D, Hwu W 2010 Programming Massively Parallel Processors (Burlington: Elsevier)

    [9]

    He W P, Feng G L, Gao X Q, Chou J F 2006 Acta Phys。 Sin. 55 3175 (in Chinese) [何文平、 封国林、 高新全、 丑纪范 2006 55 3175]

    [10]

    Li L X, Peng H P, Yang Y X, Wang X D 2007 Acta Phys. Sin. 56 51 (in Chinese) [李丽香、 彭海朋、 杨义先、 王向东 2007 56 51]

    [11]

    Gao F, Li Z Q, Tong H Q 2008 Chin. Phys. B 17 1196

    [12]

    Zheng Y, Zhang X D 2010 Chin. Phys. B 19 010505

    [13]

    Yu J Z, Su N, Vincent T L 1998 Acta Phys. Sin. 47 397 (in Chinese) [余建祖 1998 47 397]

    [14]

    Li S H, Tian Y P 2003 Chin. Phys. 12 590

    [15]

    Niu Y J, Xu W, Rong H W,Wang L, Feng J Q 2009 Acta Phys. Sin. 58 2983 (in Chinese)

    [16]

    Li X J Xu Z Y Xie Q C Wang B 2010 Acta Phys. Sin. 59 1532 (in Chinese) [李小娟、徐振源、谢青春、 王 兵 2010 59 1532]

    [17]

    Giuseppe G 2008 Chin. Phys. B 17 3247

    [18]

    Chen G P, Hao J B 2009 Acta Phys. Sin. 58 2914 (in Chinese) [陈光平、 郝加波 2009 58 2914]

    [19]

    Wang X Y, Wang M J 2007 Acta Phys. Sin. 56 5136 (in Chinese) [王兴元、王明军 2007 56 5136]

    [20]

    Han X J, Jiang B, Bi Q S 2009 Acta Phys. Sin. 58 6006 (in Chinese) [韩修静、江 波、毕勤胜 2009 58 6006]

    [21]

    Zhang R X, Yang S P 2009 Chin. Phys. B 18 3295

    [22]

    Zhao L D, Hu J B, Liu X H 2010 Acta Phys. Sin. 59 2305 (in Chinese) [赵灵冬、 胡建兵、刘旭辉 2010 59 2305]

    [23]

    Cang S J, Chen Z Q, Wu W J 2009 Chin. Phys. B 18 1792

    [24]

    Wang G Y, Zheng Y, Liu J B 2007 Acta Phys. Sin. 56 3113 (in Chinese) [王光义、 郑 艳、 刘敬彪 2007 56 3113]

    [25]

    Hao J H, Sun Z H, Xu H B 2007 Acta Phys. Sin. 56 6857 (in Chinese) [郝建红、 孙志华、 许海波 2007 56 6857]

  • [1] Li Bao-Sheng, Ding Rui-Qiang, Li Jian-Ping, Zhong Quan-Jia. Predictability of forced Lorenz system. Acta Physica Sinica, 2017, 66(6): 060503. doi: 10.7498/aps.66.060503
    [2] Lu Jian-Guang, Tang Juan, Qin Xiao-Lin, Feng Yong. Modified group preserving methods and applications in chaotic systems. Acta Physica Sinica, 2016, 65(11): 110501. doi: 10.7498/aps.65.110501
    [3] Guan Guo-Rong, Wu Cheng-Mao, Jia Qian. An improved high performance Lorenz system and its application. Acta Physica Sinica, 2015, 64(2): 020501. doi: 10.7498/aps.64.020501
    [4] Da Chao-Jiu, Mu Shuai, Ma De-Shan, Yu Hai-Peng, Hou Wei, Gong Zhi-Qiang. The theoretical study of the turning period in numerical weather prediction models based on the Lorenz equations. Acta Physica Sinica, 2014, 63(2): 029201. doi: 10.7498/aps.63.029201
    [5] Zhang Zhi-Sen, Gong Zhi-Qiang, Zhi Rong. Analysis of the direction of information transfer of Lorenz system and Walker circulation with transfer entropy. Acta Physica Sinica, 2013, 62(12): 129203. doi: 10.7498/aps.62.129203
    [6] Jia Hong-Yan, Chen Zeng-Qiang, Xue Wei. Analysis and circuit implementation for the fractional-order Lorenz system. Acta Physica Sinica, 2013, 62(14): 140503. doi: 10.7498/aps.62.140503
    [7] Li Ai-Bing, Zhang Li-Feng, Xiang Jie. Influence of external forcing on the predictability of Lorenz model. Acta Physica Sinica, 2012, 61(11): 119202. doi: 10.7498/aps.61.119202
    [8] Li Hui-Min, Fan Yang-Yu, Sun Heng-Yi, Zhang Jing, Jia Meng. Growing two-dimensional manifold of nonlinear maps based on generalized Foliation condition. Acta Physica Sinica, 2012, 61(2): 029501. doi: 10.7498/aps.61.029501
    [9] Li Xiao-Juan, Xu Zhen-Yuan, Xie Qing-Chun, Wang Bing. Generalized synchronization of two different unidirectional coupled Lorenz systems. Acta Physica Sinica, 2010, 59(3): 1532-1539. doi: 10.7498/aps.59.1532
    [10] Sun Ke-Hui, Yang Jing-Li, Ding Jia-Feng, Sheng Li-Yuan. Circuit design and implementation of Lorenz chaotic system with one parameter. Acta Physica Sinica, 2010, 59(12): 8385-8392. doi: 10.7498/aps.59.8385
    [11] Li Qing-Du, Yang Xiao-Song. A new algorithm for computation of two-dimensional unstable manifolds and its applications. Acta Physica Sinica, 2010, 59(3): 1416-1422. doi: 10.7498/aps.59.1416
    [12] Li Wen-Lin, Song Yun-Zhong. Chaos anti-control of nonlinear system with uncertainties. Acta Physica Sinica, 2008, 57(1): 51-55. doi: 10.7498/aps.57.51
    [13] Wang Qi-Guang, Zhi Rong, Zhang Zeng-Ping. The research on long range correlation of Lorenz system. Acta Physica Sinica, 2008, 57(8): 5343-5350. doi: 10.7498/aps.57.5343
    [14] Analyzing the noise resistance effect for two chaos secure systems. Acta Physica Sinica, 2007, 56(12): 6857-6864. doi: 10.7498/aps.56.6857
    [15] Wang Xing-Yuan, Wang Ming-Jun. Hyperchaotic Lorenz system. Acta Physica Sinica, 2007, 56(9): 5136-5141. doi: 10.7498/aps.56.5136
    [16] Li Shuang, Xu Wei, Li Rui-Hong, Li Yu-Peng. A new method of synchronization between two different chaotic systems. Acta Physica Sinica, 2006, 55(11): 5681-5687. doi: 10.7498/aps.55.5681
    [17] Wang Jie-Zhi, Chen Zeng-Qiang, Yuan Zhu-Zhi. A new chaotic system and analysis of its properties. Acta Physica Sinica, 2006, 55(8): 3956-3963. doi: 10.7498/aps.55.3956
    [18] He Wen-Ping, Feng Guo-Lin, Gao Xin-Quan, Chou Ji-Fan. Dynamics of the Lorenz system under quasiperiodic driving. Acta Physica Sinica, 2006, 55(6): 3175-3179. doi: 10.7498/aps.55.3175
    [19] Tang Guo-Ning, Luo Xiao-Shu. The prediction feedback control for chaotic systems. Acta Physica Sinica, 2004, 53(1): 15-20. doi: 10.7498/aps.53.15
    [20] Guo Hui-Jun, Liu Jun_Hua. Chaos control of Lorenz system via RBF neuralnetwork sliding mode controller. Acta Physica Sinica, 2004, 53(12): 4080-4086. doi: 10.7498/aps.53.4080
Metrics
  • Abstract views:  8514
  • PDF Downloads:  839
  • Cited By: 0
Publishing process
  • Received Date:  12 May 2010
  • Accepted Date:  01 July 2010
  • Published Online:  15 March 2011

/

返回文章
返回
Baidu
map