-
Negative permittivity can be realized from the periodic unit cells of the metallic bar structure, and the effects of the length and the width of the metallic bar on negative permittivity is discussed. Through arraying two unit cells along the direction of the wave vector k , the negative permeability can be achieved from a strong resonance response of the two metallic bars to external magnetic field, so a one-dimensional left-handed metamaterials is obtained. The left-handed properties can also be obtained if magnetic boundary conditions of the two unit cells are interchanged with those of wave ports, but electrical boundary conditions are unchanged, i.e., the wave vector k rotates by 90°. So a two-dimensional left-handed metamaterials is achieved.
-
Keywords:
- left-handed metamaterials /
- structural design /
- metallic bar /
- two dimensions
[1] Veselago V G 1968 Sov. Phys. Usp. 10 509
[2] Pendry J B, Holden A J, Stewart W J, Youngs I 1996 Phys. Rev. Lett. 76 4773
[3] Pendry J B, Holden A J, Robbins D J, Stewart W J 1999 IEEE Trans. Microwave Theor. Techn. 47 2075
[4] Smith D R, Padilla W J, Vier D C, Nemat-Nasser S C, Schultz S 2000 Phys. Rev. Lett. 84 4184
[5] Pendry J B 2000 Phys. Rev. Lett. 85 3966
[6] Schurig D, Mock J J, Justice B J, Cummer S A, Pendry J B, Starr A F, Smith D R 2006 Science 314 977
[7] Meng F Y, Wu Q, Wu J 2006 Acta Phys. Sin. 55 2194 (in Chinese) [孟繁义、吴 群、吴 健 2006 55 2194]
[8] Li H Y, Zhang Y W, Wang P C, Li G Q 2007 Acta Phys. Sin. 56 6480 (in Chinese) [李海洋、张冶文、王蓬春、李贵泉 2007 56 6480]
[9] Liu Y H, Luo C R, Zhao X P 2007 Acta Phys. Sin. 56 5883 (in Chinese) [刘亚红、罗春荣、赵晓鹏 2007 56 5883]
[10] Yang Y M, Qu S B, Wang J F, Xu Z 2009 Acta Phys. Sin. 58 1031 (in Chinese) [杨一鸣、屈绍波、王甲富、徐 卓 2009 58 1031]
[11] Zhou J F, Zhang L, Tuttle G, Koschny T, Soukoulis C M 2006 Phys. Rev. B 73 041101
[12] Alici K B, Ozbay E 2008 Photon. Nanostruct.: Fundam. Appl. 6 102
[13] Kante B, Lustrac A D, Lourtioz J M 2009 Photon. Nanostruct.: Fundam. Appl. 8 174
[14] Simovski C R 2008 Metamaterials 2 169
[15] Isik O, Esselle K P 2009 Metamaterials 3 33
[16] Smith D R, Vier D C, Koschny T, Soukoulis C M 2005 Phys. Rev. E 71 036617
[17] Ziolkowski R W 2003 IEEE Trans. Antennas Propag. 51 1516
[18] Koschny T, Markos P, Smith D R, Soukoulis C M 2003 Phys. Rev. E 68 065602
[19] Zhou J F, Economon E N, Koschny T, Soukoulis C M 2006 Opt. Lett. 31 3620
-
[1] Veselago V G 1968 Sov. Phys. Usp. 10 509
[2] Pendry J B, Holden A J, Stewart W J, Youngs I 1996 Phys. Rev. Lett. 76 4773
[3] Pendry J B, Holden A J, Robbins D J, Stewart W J 1999 IEEE Trans. Microwave Theor. Techn. 47 2075
[4] Smith D R, Padilla W J, Vier D C, Nemat-Nasser S C, Schultz S 2000 Phys. Rev. Lett. 84 4184
[5] Pendry J B 2000 Phys. Rev. Lett. 85 3966
[6] Schurig D, Mock J J, Justice B J, Cummer S A, Pendry J B, Starr A F, Smith D R 2006 Science 314 977
[7] Meng F Y, Wu Q, Wu J 2006 Acta Phys. Sin. 55 2194 (in Chinese) [孟繁义、吴 群、吴 健 2006 55 2194]
[8] Li H Y, Zhang Y W, Wang P C, Li G Q 2007 Acta Phys. Sin. 56 6480 (in Chinese) [李海洋、张冶文、王蓬春、李贵泉 2007 56 6480]
[9] Liu Y H, Luo C R, Zhao X P 2007 Acta Phys. Sin. 56 5883 (in Chinese) [刘亚红、罗春荣、赵晓鹏 2007 56 5883]
[10] Yang Y M, Qu S B, Wang J F, Xu Z 2009 Acta Phys. Sin. 58 1031 (in Chinese) [杨一鸣、屈绍波、王甲富、徐 卓 2009 58 1031]
[11] Zhou J F, Zhang L, Tuttle G, Koschny T, Soukoulis C M 2006 Phys. Rev. B 73 041101
[12] Alici K B, Ozbay E 2008 Photon. Nanostruct.: Fundam. Appl. 6 102
[13] Kante B, Lustrac A D, Lourtioz J M 2009 Photon. Nanostruct.: Fundam. Appl. 8 174
[14] Simovski C R 2008 Metamaterials 2 169
[15] Isik O, Esselle K P 2009 Metamaterials 3 33
[16] Smith D R, Vier D C, Koschny T, Soukoulis C M 2005 Phys. Rev. E 71 036617
[17] Ziolkowski R W 2003 IEEE Trans. Antennas Propag. 51 1516
[18] Koschny T, Markos P, Smith D R, Soukoulis C M 2003 Phys. Rev. E 68 065602
[19] Zhou J F, Economon E N, Koschny T, Soukoulis C M 2006 Opt. Lett. 31 3620
Catalog
Metrics
- Abstract views: 8440
- PDF Downloads: 1206
- Cited By: 0