[1] |
Wang Fei-Fei, Fang Jian-Hui, Wang Ying-Li, Xu Rui-Li. Noether symmetry and Mei symmetry of a discrete holonomic mechanical system with variable mass. Acta Physica Sinica,
2014, 63(17): 170202.
doi: 10.7498/aps.63.170202
|
[2] |
Zhang Yi, Jin Shi-Xin. Noether symmetries of dynamics for non-conservative systems with time delay. Acta Physica Sinica,
2013, 62(23): 234502.
doi: 10.7498/aps.62.234502
|
[3] |
Liu Chang, Zhao Yong-Hong, Chen Xiang-Wei. Geometric representation of Noether symmetry for dynamical systems. Acta Physica Sinica,
2010, 59(1): 11-14.
doi: 10.7498/aps.59.11
|
[4] |
Jia Li-Qun, Zhang Yao-Yu, Yang Xin-Fang, Cui Jin-Chao, Xie Yin-Li. Type Ⅲ structural equation and Mei conserved quantity of Mei symmetry for a Lagrangian system. Acta Physica Sinica,
2010, 59(5): 2939-2941.
doi: 10.7498/aps.59.2939
|
[5] |
Fang Jian-Hui. A kind of conserved quantity of Mei symmetry for Lagrange system. Acta Physica Sinica,
2009, 58(6): 3617-3619.
doi: 10.7498/aps.58.3617
|
[6] |
Cai Jian-Le, Mei Feng-Xiang. Conformal invariance and conserved quantity of Lagrange systems under Lie point transformation. Acta Physica Sinica,
2008, 57(9): 5369-5373.
doi: 10.7498/aps.57.5369
|
[7] |
Liu Chang, Mei Feng-Xiang, Guo Yong-Xin. Conformal symmetry and Hojman conserved quantity of Lagrange system. Acta Physica Sinica,
2008, 57(11): 6704-6708.
doi: 10.7498/aps.57.6704
|
[8] |
Luo Shao-Kai. A new type of non-Noether adiabatic invariants, i.e. adiabatic invariants of Lut zky type, for Lagrangian systems. Acta Physica Sinica,
2007, 56(10): 5580-5584.
doi: 10.7498/aps.56.5580
|
[9] |
Zhang Yi, Fan Cun-Xin, Mei Feng-Xiang. Perturbation of symmetries and Hojman adiabatic invariants for Lagrangian system. Acta Physica Sinica,
2006, 55(7): 3237-3240.
doi: 10.7498/aps.55.3237
|
[10] |
Zhang Yi. Symmetries and Mei conserved quantities for systems of generalized classical mechanics. Acta Physica Sinica,
2005, 54(7): 2980-2984.
doi: 10.7498/aps.54.2980
|
[11] |
Wu Hui-Bin, Mei Feng-Xiang. Symmetries of Lagrange system subjected to gyroscopic forces. Acta Physica Sinica,
2005, 54(6): 2474-2477.
doi: 10.7498/aps.54.2474
|
[12] |
Fang Jian-Hui, Peng Yong, Liao Yong-Pan. On Mei symmetry of Lagrangian system and Hamiltonian system. Acta Physica Sinica,
2005, 54(2): 496-499.
doi: 10.7498/aps.54.496
|
[13] |
Luo Shao-Kai, Guo Yong-Xin, Mei Feng-Xiang. Noether symmetry and Hojman conserved quantity for nonholonomic mechanical systems. Acta Physica Sinica,
2004, 53(5): 1270-1275.
doi: 10.7498/aps.53.1270
|
[14] |
Zhang Yi, Mei Feng-Xiang. Effects of constraints on Noether symmetries and conserved quantities in a Birkhoffian system. Acta Physica Sinica,
2004, 53(8): 2419-2423.
doi: 10.7498/aps.53.2419
|
[15] |
Zhang Yi. Form invariance of mechanical systems with unilateral holonomic constraints. Acta Physica Sinica,
2004, 53(2): 331-336.
doi: 10.7498/aps.53.331
|
[16] |
Zhang Yi, Mei Feng-Xiang. Effects of non-conservative forces and nonholonomic constraints on Noether symmetries of a Lagrange system. Acta Physica Sinica,
2004, 53(3): 661-668.
doi: 10.7498/aps.53.661
|
[17] |
Luo Shao-Kai. Mei symmetry, Noether symmetry and Lie symmetry of Hamiltonian system. Acta Physica Sinica,
2003, 52(12): 2941-2944.
doi: 10.7498/aps.52.2941
|
[18] |
Fang Jian-Hui, Yan Xiang-Hong, Chen Pei-Sheng. Form invariance and Noether symmetry of a relativistic mechanical system. Acta Physica Sinica,
2003, 52(7): 1561-1564.
doi: 10.7498/aps.52.1561
|
[19] |
Fang Jian-Hui, Xue Qing-Zhong, Zhao Shou-Qing. . Acta Physica Sinica,
2002, 51(10): 2183-2185.
doi: 10.7498/aps.51.2183
|
[20] |
Ge Wei-Kuan. . Acta Physica Sinica,
2002, 51(5): 939-942.
doi: 10.7498/aps.51.939
|