[1] |
Meng Jing-Yi, Lu Hong-Wei, Ma Shi-Le, Zhang Jia-Qi, He Fu-Min, Su Wei-Tao, Zhao Xiao-Dong, Tian Ting, Wang Yi, Xing Yu. Progress of application of functional atomic force microscopy in study of nanodielectric material properties. Acta Physica Sinica,
2022, 71(24): 240701.
doi: 10.7498/aps.71.20221462
|
[2] |
Yu Yi-Fei, Cao Yi. Evolution from dip-pen nanolithography to mechanochemical printing. Acta Physica Sinica,
2021, 70(2): 024202.
doi: 10.7498/aps.70.20201537
|
[3] |
Li Yan, Zheng Qi, Chang Xiao, Huang Li, Lin Xiao, Cheng Zhi-Hai, Gao Hong-Jun. Atomic, molecular, charge manipulation and application of atomic force microscopy. Acta Physica Sinica,
2021, 70(13): 136802.
doi: 10.7498/aps.70.20202129
|
[4] |
Fan Hang, He Guan-Song, Yang Zhi-Jian, Nie Fu-De, Chen Peng-Wan. Theoretical study of interface thermodynamic properties of 1,3,5-triamino-2,4,6-trinitrobenzene based polymer bonded explosives. Acta Physica Sinica,
2019, 68(10): 106201.
doi: 10.7498/aps.68.20190075
|
[5] |
Deng Chang-Fa, Yan Shao-An, Wang Dong, Peng Jin-Feng, Zheng Xue-Jun. Optically modulated electromechanical coupling properties of single GaN nanobelt based on conductive atomic force microscopy. Acta Physica Sinica,
2019, 68(23): 237304.
doi: 10.7498/aps.68.20191097
|
[6] |
Guan Xin-Lei, Wang Wei, Jiang Nan. Influnce of polymer additives on the transport process in drag reducing turbulent flow. Acta Physica Sinica,
2015, 64(9): 094703.
doi: 10.7498/aps.64.094703
|
[7] |
Li Zheng-Hua, Li Xiang. Dynamic magnetic imaging by alternating force magnetic force mmicroscopy. Acta Physica Sinica,
2014, 63(17): 178503.
doi: 10.7498/aps.63.178503
|
[8] |
Shao Zheng-Zheng, Wang Xiao-Feng, Zhang Xue-Ao, Chang Sheng-Li. Piezoelectric discharge characteristic of ZnO nanorod studied with atomic force microscopy. Acta Physica Sinica,
2010, 59(1): 550-554.
doi: 10.7498/aps.59.550
|
[9] |
Zhao Hua-Bo, Li Zhen, Li Rui, Zhang Zhao-Hui, Zhang Yan, Liu Yu, Li Yan. Using conductive atomic force microscope on carbon nanotube networks. Acta Physica Sinica,
2009, 58(12): 8473-8477.
doi: 10.7498/aps.58.8473
|
[10] |
Sun Zhen, An Zhong, Li Yuan, Liu Wen, Liu De-Sheng, Xie Shi-Jie. Study on the process of collision between a polaron and a triplet exciton in conjugated polymers. Acta Physica Sinica,
2009, 58(6): 4150-4155.
doi: 10.7498/aps.58.4150
|
[11] |
Zhang Xiang-Jun, Meng Yong-Gang, Wen Shi-Zhu. On micro scanning forces under the coupling deformation of atomic force microscope probe. Acta Physica Sinica,
2004, 53(3): 728-733.
doi: 10.7498/aps.53.728
|
[12] |
Wang Xiao-Ping, Liu Lei, Hu Hai-Long, Zhang Kun. Study of tip-sample contact process and phase contrast in tapping mode atomic force microscopy. Acta Physica Sinica,
2004, 53(4): 1008-1014.
doi: 10.7498/aps.53.1008
|
[13] |
Zeng Hua-Rong, Li Guo-Rong, Yin Qing-Rui, Tang Xin-Gui. SFM investigation of nanoscale domain structure in ferroelectric PZT thin films. Acta Physica Sinica,
2003, 52(7): 1783-1787.
doi: 10.7498/aps.52.1783
|
[14] |
Sun Run-Guang, Qi Hao, Zhang Jing. . Acta Physica Sinica,
2002, 51(6): 1203-1207.
doi: 10.7498/aps.51.1203
|
[15] |
ZHANG CHUN, MA YUN-XHENG, XUN XIN, YE CHENG. ELECTRON INTERACTION AND THE POLARON IN POLYMERS. Acta Physica Sinica,
1999, 48(5): 917-925.
doi: 10.7498/aps.48.917
|
[16] |
WANG HUI, LAN WEN-GUANG, LIN WEI-ZHU, MO DANG. MIRRORLESS OPTICAL BISTABILITY DUE TO PHOTOINDUCED EXCITON BLEACHING OF POLYMERS. Acta Physica Sinica,
1997, 46(8): 1493-1499.
doi: 10.7498/aps.46.1493
|
[17] |
SU FANG, WANG WEN-LOU, XIE BIN, JIANG ZONG-SI, LIN FENG-LIANG. IONIC CONDUCTIVITY UNDER HIGH HYDRO-STATIC PRESSURE IN HIGH POLYMER THIN FILM (PEO)n-CuBr2. Acta Physica Sinica,
1994, 43(10): 1648-1657.
doi: 10.7498/aps.43.1648
|
[18] |
PENG JING-CUI. SIMULATION OF TWO AND THREE DIMENSIONAL RING POLYMERS USING CLOSED GAUSSIAN RANDOM WALKS. Acta Physica Sinica,
1994, 43(10): 1580-1586.
doi: 10.7498/aps.43.1580
|
[19] |
TONG GUO-PING. TRANSFER-INTEGRAL CALCULATION FOR CONDUCTING POLYMERS. Acta Physica Sinica,
1994, 43(8): 1326-1330.
doi: 10.7498/aps.43.1326
|
[20] |
WAN MEI-XIANG. STUDIES ON ABSORPTION MECHANISM OF MICROWAVE ABSORBENT OF CONDUCTING POLYMERS. Acta Physica Sinica,
1992, 41(6): 917-923.
doi: 10.7498/aps.41.917
|