[1] |
Xu Chao, Li Yuan-Cheng. Lie-Mei symmetry and conserved quantities of Nielsen equations for a singular nonholonomic system of Chetaev'type. Acta Physica Sinica,
2013, 62(12): 120201.
doi: 10.7498/aps.62.120201
|
[2] |
Zheng Shi-Wang, Wang Jian-Bo, Chen Xiang-Wei, Li Yan-Min, Xie Jia-Fang. Lie symmetry and their conserved quantities of Tznoff equations for the vairable mass nonholonomic systems. Acta Physica Sinica,
2012, 61(11): 111101.
doi: 10.7498/aps.61.111101
|
[3] |
Dong Wen-Shan, Huang Bao-Xin. Lie symmetries and Noether conserved quantities of generalized nonholonomic mechanical systems. Acta Physica Sinica,
2010, 59(1): 1-6.
doi: 10.7498/aps.59.1
|
[4] |
Zheng Shi-Wang, Xie Jia-Fang, Chen Xiang-Wei, Du Xue-Lian. Another kind of conserved quantity induced directly from Mei symmetry of Tzénoff equations for holonomic systems. Acta Physica Sinica,
2010, 59(8): 5209-5212.
doi: 10.7498/aps.59.5209
|
[5] |
Li Yuan-Cheng, Wang Xiao-Ming, Xia Li-Li. Unified symmetry and conserved quantities of Nielsen equation for a holonomic mechanical system. Acta Physica Sinica,
2010, 59(5): 2935-2938.
doi: 10.7498/aps.59.2935
|
[6] |
Li Yuan-Cheng, Xia Li-Li, Wang Xiao-Ming, Liu Xiao-Wei. Lie-Mei symmetry and conserved quantities of Appell equation for a holonomic mechanical system. Acta Physica Sinica,
2010, 59(6): 3639-3642.
doi: 10.7498/aps.59.3639
|
[7] |
Zhang Yi. Birkhoff symmetries and conserved quantities of generalized Birkhoffian systems. Acta Physica Sinica,
2009, 58(11): 7436-7439.
doi: 10.7498/aps.58.7436
|
[8] |
Jia Li-Qun, Cui Jin-Chao, Zhang Yao-Yu, Luo Shao-Kai. Lie symmetry and conserved quantity of Appell equation for a Chetaev’s type constrained mechanical system. Acta Physica Sinica,
2009, 58(1): 16-21.
doi: 10.7498/aps.58.16
|
[9] |
Liu Yang-Kui, Fang Jian-Hui. Two types of conserved quantities of Lie-Mei symmetry for a variable mass system in phase space. Acta Physica Sinica,
2008, 57(11): 6699-6703.
doi: 10.7498/aps.57.6699
|
[10] |
Zhang Kai, Wang Ce, Zhou Li-Bin. Lie symmetry and conserved quantities of Nambu mechanical systems. Acta Physica Sinica,
2008, 57(11): 6718-6721.
doi: 10.7498/aps.57.6718
|
[11] |
Zheng Shi-Wang, Jia Li-Qun. Mei symmetry and conserved quantity of Tzénoff equations for nonholonomic systems. Acta Physica Sinica,
2007, 56(2): 661-665.
doi: 10.7498/aps.56.661
|
[12] |
Zheng Shi-Wang, Qiao Yong-Fen. Integrating factors and conservation theorems of Lagrange’s equations for generalized nonconservative systems in terms of quasi-coordinates. Acta Physica Sinica,
2006, 55(7): 3241-3245.
doi: 10.7498/aps.55.3241
|
[13] |
Zhang Yi. Symmetries and Mei conserved quantities for systems of generalized classical mechanics. Acta Physica Sinica,
2005, 54(7): 2980-2984.
doi: 10.7498/aps.54.2980
|
[14] |
Qiao Yong-Fen, Li Ren-Jie, Sun Dan-Na. Hojman’s conservation theorems for Raitzin’s canonical equations of motion of nonlinear nonholonomic systems. Acta Physica Sinica,
2005, 54(2): 490-495.
doi: 10.7498/aps.54.490
|
[15] |
Zhang Hong-Bin, Chen Li-Qun, Liu Rong-Wan, Gu Shu-Long. The generalized Hojman’s theorem. Acta Physica Sinica,
2005, 54(6): 2489-2493.
doi: 10.7498/aps.54.2489
|
[16] |
Xu Xue-Jun, Mei Feng-Xiang. Unified symmetry of the holonomic system in terms of quasi-coordinates. Acta Physica Sinica,
2005, 54(12): 5521-5524.
doi: 10.7498/aps.54.5521
|
[17] |
Qiao Yong-Fen, Zhao Shu-Hong, Li Ren-Jie. Non Noether conserved quantity of the holonomic mechanical systems in terms of quasi-coordinates ——An extension of Hojman theorem. Acta Physica Sinica,
2004, 53(7): 2035-2039.
doi: 10.7498/aps.53.2035
|
[18] |
Mei Feng-Xiang. Lie symmetry and the conserved quantity of a generalized Hamiltonian system. Acta Physica Sinica,
2003, 52(5): 1048-1050.
doi: 10.7498/aps.52.1048
|
[19] |
FANG JIAN-HUI, ZHAO SONG-QING. LIE SYMMETRIES AND CONSERED QUANTITIES OF RELATIVISTIC ROTATIONAL VARIABLE MASS SYSTEM. Acta Physica Sinica,
2001, 50(3): 390-393.
doi: 10.7498/aps.50.390
|
[20] |
QIAO YONG-FEN, LI REN-JIE, ZHAO SHU-HONG. SYMMETRY AND INVARIANT IN GENERALIZED MECHANICAL SYSTEMS IN THE HIGH-DIMENSIONAL EXTENDED PHASE SPACE. Acta Physica Sinica,
2001, 50(5): 811-815.
doi: 10.7498/aps.50.811
|