In the present paper, the energies of vacancy relaxation and vacancy formation of the face-centred cubic metals (lead, silver, nikel, copper, and aluminium) are calculated by using the idea of metallic bond and the Morse potential of pure metals.In the calculation of relaxation energy, both the atomic and the electronic redistribution are considered. The energies of vacancy relaxation calculated by using the present method are 1.27-1.36,>1.73, 1.93-2.29, 1.52-1.84, and >1.09 eV respectively. These results are more reasonable than those obtained without taking into account the electronic redistribution. These results indicate that the contribution of electronic redistribution to the effect of relaxation is very important.The formation energies of vacancy calculated by using the present method for the five metals mentioned above are 0.64-0.74, <1.22, 1.78-2.15, 1.52-1.85, and <1.67 eV respectively. They are larger than the experimental values by a fraction of one electron volt. This result gives a reasonable theoretical upper limit to the formation energy of vacancy.