搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Z = 6—51间类锂离子等电子序列激发能及辐射跃迁速率

赵嘉勋 武晨晟 宋庆和

引用本文:
Citation:

Z = 6—51间类锂离子等电子序列激发能及辐射跃迁速率

赵嘉勋, 武晨晟, 宋庆和

Excitation energies and radiative transition rates of isoelectronic sequences of Li-like ions with Z = 6–51

ZHAO Jiaxun, WU Chensheng, SONG Qinghe
cstr: 32037.14.aps.74.20250611
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 本文基于多组态Dirac-Fock方法(multi-configuration Dirac-Fock, MCDF)和组态相互作用方法(configuration interaction, CI)系统计算了类锂等电子序列Z = 6—51间C3+, F6+, Mg9+, P12+, Ar15+, Sc18+, Cr21+, Co24+, Zn27+, As30+, Kr33+, Y36+, Mo39+, Rh42+, Cd45+, Sn37+, Sb38+共17种离子$ 1{{\rm s}}^{2}{nl}~ ({n}{}\leqslant{}4, \;{l}{}\leqslant{}{3)} $对应的15个能级激发能以及能级间的所有电偶极(E1)、磁偶极(M1)和电四极(E2)跃迁速率. 将所得计算结果与NIST数据库及先前的一些理论结果进行对比, 当前的绝大部分激发能计算结果与NIST数据的差异在0.02%以内, 且显著优于先前同样采用MCDF+CI方法得到的理论结果. 而大部分跃迁速率计算结果与NIST数据的差异亦在5%以内, 部分与NIST数据差异较大的激发能以及跃迁速率数据, 当前的结果与先前同样采用MCDF+CI方法得到的理论结果相符, 这一结果提示未来需对这些跃迁进行更加深入的理论和实验研究. 本研究可为未来天体和实验室等离子体的实验诊断和理论模拟提供了精确的数据支撑. 本文数据集可在https://www.doi.org/10.57760/sciencedb.j00213.00154中访问获取.
    Li-like ions widely exist in astrophysical and laboratory plasmas, and their precise atomic parameters (e.g. excitation energies and transition rates) are very important for plasma diagnostics and spectral analysis. In this work, we employ the GRASP2018 software package, which is widely used in atomic structure calculations, to systematically compute the lowest 15 energy levels and the electric dipole (E1), magnetic dipole (M1), and electric quadrupole (E2) transition rates between them of 17 Li-like ions across the isoelectronic sequence (Z = 6–51: C3+, F6+, Mg9+, P12+, Ar15+, Sc18+, Cr21+, Co24+, Zn27+, As30+, Kr33+, Y36+, Mo39+, Rh42+, Cd45+, Sn37+, Sb38+). The calculations are based on the multi-configuration Dirac-Fock (MCDF) and configuration interaction (CI) method combined with high-order relativistic corrections and quantum electrodynamics effects such as Breit interaction, self-energy correction and vacuum polarization. The computational convergence is achieved. The calculated excitation energies and transition rates are compared with the NIST database and previous theoretical results. Due to the reasonable construction and larger scale of baseset, the current computational results show evident improvement compared with the results obtained using the same MCDF+CI method previously. Particularly for the two lowest excited states, [1s22p]1/2 and [1s22p]3/2, which exhibit slower convergence, the relative difference between current results and the NIST data is reduced by one to two orders of magnitude compared with previous MCDF+CI calculations. This accuracy even approaches that achieved by S-matrix methods specifically optimized for the ground state and these two lowest excited states. For transition rates, except for certain weak transitions with rates below $ {10}^{3}\;{{{\mathrm{s}}}}^{{-1}} $, the difference between our calculations and previous theoretical results obtained using the MCDF+CI method is still within 1%. Furthermore, our calculations accord with the NIST data within 5% for the majority of transitions. A comparison of NIST data with other previous theoretical results shows evident discrepancies between our calculations and the NIST data for some excitation energies and transition rates. Our results are consistent with other theoretical results for these specific values, indicating that these particular energy levels and transitions need more detailed theoretical and experimental investigation. This work provides highly accurate data for supporting experimental diagnostics and theoretical modeling of astrophysical and laboratory plasmas in future research. The datasets presented in this paper are openly available at https://www.doi.org/10.57760/sciencedb.j00213.00154.
      通信作者: 武晨晟, 20220209@kust.edu.cn ; 宋庆和, songqinghe@kust.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 12204057)、云南省基础研究计划(批准号: 202401CF070090)和计算物理全国重点实验室资助的课题.
      Corresponding author: WU Chensheng, 20220209@kust.edu.cn ; SONG Qinghe, songqinghe@kust.edu.cn
    • Funds: Project supported by the the National Natural Science Foundation of China (Grant No. 12204057), the Applied Basic Research Program of Yunnan Province, China (Grant No. 202401CF070090), and the National Key Laboratory of Computational Physics.
    [1]

    Hu Z M, Xiong G, He Z C, Yang Z H, Numadate N, Huang C W, Yang J M, Yao K, Wei B R, Zou Y M, Wu C S, Ma Y L, Wu Y, Gao X, Nakamura N 2022 Phys. Rev. A 105 L030801Google Scholar

    [2]

    Wu C S, Xie L Y, Hu Z M, Gao X 2020 J. Quant. Spectrosc. Ra. 246 106912Google Scholar

    [3]

    Johnson W R, Blundell S A, Sapirstein J 1988 Phys. Rev. A 37 2764Google Scholar

    [4]

    Doschek G A, Feldman U 2010 J. Phys. B: At. Mol. Opt. Phys. 43 232001Google Scholar

    [5]

    Fujioka S, Takabe H, Yamamoto N, Salzmann D, Wang F, Nishimura H, Li Y, Dong Q, Wang S, Zhang Y, Rhee Y, Lee Y, Han J, Tanabe M, Fujiwara T, Nakabayashi Y, Zhao G, Zhang J, Mima K 2009 Nat. Phys. 5 821Google Scholar

    [6]

    Del Zanna G, Mason H E 2018 Living Rev. Sol. Phys. 15 5Google Scholar

    [7]

    Griem H R 1986 Principles of Plasma Spectroscopy (Dordrecht: Springer Netherlands) pp885–910

    [8]

    Foot C J 2005 Atomic physics (New York: Oxford University Press

    [9]

    Aggarwal K M, Keenan F P, Heeter R F 2010 Phys. Scripta 81 015303Google Scholar

    [10]

    Aggarwal K M, Keenan F P 2012 Atom. Data Nucl. Data 98 1003Google Scholar

    [11]

    Aggarwal K M, Keenan F P 2013 Atom. Data Nucl. Data 99 156Google Scholar

    [12]

    Khatri I, Goyal A, Aggarwal S, Singh A K, Mohan M 2016 Radiat. Phys. Chem. 123 46Google Scholar

    [13]

    刘尚宗, 颉录有, 丁晓彬, 董晨钟 2012 61 093106Google Scholar

    Liu S Z, Xie L Y, Ding X B, Dong C Z 2012 Acta Phys. Sin. 61 093106Google Scholar

    [14]

    胡木宏, 刘博文, 徐恩慧, 马玉龙, 吴勇 2020 原子与分子 37 819Google Scholar

    Hu M H, Liu B W, Xu E H, Ma Y L, Wu Y 2020 J. Atomic Mol. Phys. 37 819Google Scholar

    [15]

    Gu M F 2005 Atom. Data Nucl. Data 89 267Google Scholar

    [16]

    Sapirstein J, Cheng K T 2011 Phys. Rev. A 83 012504Google Scholar

    [17]

    Yerokhin V A, Surzhykov A, Müller A 2017 Phys. Rev. A 96 042505Google Scholar

    [18]

    Ge Z M, Wang Z W, Zhou Y J, He L M, Liu G G 2003 Chin. Phys. B 12 488Google Scholar

    [19]

    Wang Z W, Zhu X W, Chung K T 1992 J. Phys. B: At. Mol. Opt. Phys. 25 3915Google Scholar

    [20]

    Hu M H, Wang Z W, Zeng F, Wang T, Wang J 2011 Chin. Phys. B 20 083101Google Scholar

    [21]

    Wang Z W, Zhu X W, Chung K T 1992 Phys. Rev. A 46 6914Google Scholar

    [22]

    Wang Z W, Zhu X W, Chung K T 1993 Phys. Scripta 47 65Google Scholar

    [23]

    Wang L M, Liu T T, Yang W Q, Yan Z C 2023 Chin. Phys. B 32 033102Google Scholar

    [24]

    Cai J, Yu W W, Zhang N 2014 Chin. Phys. Lett. 31 093101Google Scholar

    [25]

    Nahar S N 2002 Astron. Astrophys. 389 716Google Scholar

    [26]

    NIST Atomic Spectra Database (ver. 5.12), Kramida A, Ralchenko Y, Reader J, NIST ASD Team (2024) https:// physics.nist.gov/asd [2025-4-11]

    [27]

    Dyall K G, Grant I P, Johnson C T, Parpia F A, Plummer E P 1989 Comput. Phys. Commun. 55 425Google Scholar

    [28]

    Froese Fischer C, Gaigalas G, Jönsson P, Bieroń J 2019 Comput. Phys. Commun. 237 184Google Scholar

    [29]

    Grant I P 2007 Relativistic Quantum Theory of Atoms and Molecules (New York: Springer-Verlag

    [30]

    刘博文 2021 硕士学位论文 (大连: 辽宁师范大学)

    Liu B W 2021 M. S. Thesis (Dalian: Liaoning Normal University

    [31]

    Martin G A, Wiese W L 1976 J. Phys. Chem. Ref. Data 5 537Google Scholar

  • 图 1  Mg9+, Cr21+, Mo39+三种离子两个激发态[1s22p]1/2和[1s24f]5/2的激发能随着基组扩大的收敛情况

    Fig. 1.  Convergence of the excitation energy for two excited states [1s22p]1/2 and [1s24f]5/2 of Mg9+, Cr21+ and Mo39+ ions with basis set expansion.

    图 2  Mg9+, Cr21+, Mo39+三种离子能级间E1, M1, E2跃迁的跃迁速率与相对不确定度之间的关系

    Fig. 2.  Relationship between the calculated transition rates (E1, M1, E2) and the relative uncertainties of the results for level transitions in the Mg9+, Cr21+ and Mo39+ ions.

    表 1  准完备基组的构建

    Table 1.  Construction of the quasi-complete basis.

    要优化的轨道a) 参考组态选取b) 优化的能级c)
    基组(n ≤ 2) 1s2s2p [1s22s, 1s22p] [1s22s]1/2, [1s22p]1/2, 3/2
    基组(n ≤ 3) 3s3p3d [1s22s, 1s22p, 1s23s, 1s23p, 1s23d] [1s22s]1/2, [1s22p]1/2, 3/2,
    [1s23s]1/2, [1s23p]1/2, 3/2,
    [1s23d]3/2, 5/2
    基组(n ≤ 4) 4s4p4d4f [1s22s, 1s22p, 1s23s, 1s23p, 1s23d,
    1s24s, 1s24p, 1s24d, 1s24f]
    [1s22s]1/2, [1s22p]1/2, 3/2,
    [1s23s]1/2, [1s23p]1/2, 3/2,
    [1s23d]3/2, 5/2, [1s24s]1/2,
    [1s24p]1/2, 3/2, [1s24d]3/2, 5/2,
    [1s24f]5/2, 7/2
    基组(n ≤ 5) 5s5p5d5f5g [1s22s, 1s22p, 1s23s, 1s23p, 1s23d, 1s24s,
    1s24p, 1s24d, 1s24f→5s5p5d5f5g]S, D
    同上
    基组(n ≤ 6) 6s6p6d6f6g6h [1s22s, 1s22p, 1s23s, 1s23p, 1s23d, 1s24s, 1s24p,
    1s24d, 1s24f→6s6p6d6f6g6 h]S, D
    同上
    基组(n ≤ 7) 7s7p7d7f7g7h7i [1s22s, 1s22p, 1s23s, 1s23p, 1s23d, 1s24s, 1s24p,
    1s24d, 1s24f→7s7p7d7f7g7h7i]S, D
    同上
    基组(n ≤ 8) 8s8p8d8f8g8h8i8k [1s22s, 1s22p, 1s23s, 1s23p, 1s23d, 1s24s, 1s24p,
    1s24d, 1s24f→8s8p8d8f8g8 h8i8k]S, D
    同上
    基组(n ≤ 9) 9s9p9d9f9g9h9i9k [1s22s, 1s22p, 1s23s, 1s23p, 1s23d, 1s24s, 1s24p,
    1s24d, 1s24f→9s9p9d9f9g9 h9i9k]S, D
    同上
    注: a)n = 1, 2, 3, 4的轨道为光谱轨道, $ n\geqslant 5 $的轨道为赝轨道; b)1s22s, 1s22p等为非相对论参考组态, “S”, “D”分别表示单、双重激发产生组态; c)MCSCF计算时优化的能级.
    下载: 导出CSV

    表 2  Mg9+激发能(单位: eV)计算结果及其与NIST[26]和其他理论计算结果[11, 15, 16]的比较

    Table 2.  Excitation energy (in eV) data for Mg9+ and its comparison with NIST[26] and other theoretical computational results[11,15,16].

    编号 能级 当前计算 NIST a) 其他理论结果 与NIST的相对差异/%
    MCDF b) MBPT c) S-Matrix d) 当前计算 MCDF MBPT S-Matrix
    1 [1s22s]1/2 0 0 0
    2 [1s22p]1/2 19.8405 19.83922 19.9758 19.8297 19.8382 0.007 0.688 –0.048 –0.005
    3 [1s22p]3/2 20.3343 20.33202 20.4655 20.3242 20.3315 0.011 0.656 –0.038 –0.003
    4 [1s23s]1/2 208.6336 208.628 208.5291 0.003 –0.047
    5 [1s23p]1/2 214.0728 214.061 214.0012 0.006 –0.028
    6 [1s23p]3/2 214.2184 214.224 214.1457 –0.003 –0.037
    7 [1s23d]3/2 216.1664 216.17 216.0475 –0.002 –0.057
    8 [1s23d]5/2 216.2115 216.215 216.0921 –0.002 –0.057
    9 [1s24s]1/2 279.2771 279.29 279.1520 –0.005 –0.049
    10 [1s24p]1/2 281.5067 281.463 281.3948 0.016 –0.024
    11 [1s24p]3/2 281.5680 281.463 281.4556 0.037 –0.003
    12 [1s24d]3/2 282.3775 282.359 282.2479 0.007 –0.039
    13 [1s24d]5/2 282.3965 282.40 282.2667 –0.001 –0.047
    14 [1s24f]5/2 282.4407 282.443 282.3021 –0.001 –0.050
    15 [1s24f]7/2 282.4510 282.453 282.3114 –0.001 –0.050
    注: a) NIST[26]数据库收录数据; b)文献[11]使用MCDF+CI方法的计算结果; c)文献[15]使用MBPT方法的计算结果; d)文献[16]使用S矩阵方法的计算结果.
    下载: 导出CSV

    表 4  Mo39+激发能(单位eV)计算结果及其与NIST[26]和其他理论计算结果[12,15,16]的比较

    Table 4.  Excitation energy (in eV) data for Mo39+ and its comparison with NIST[26] and other theoretical computational results[12,15,16].

    编号 能级 当前计算 NIST a) 其他理论结果 与NIST的相对差异/%
    MCDF b) MBPT c) S-Matrix d) 当前计算 MCDF MBPT S-Matrix
    1 [1s22s]1/2 0 0
    2 [1s22p]1/2 86.1124 86.108 86.2085 86.1764 86.1041 0.005 0.117 0.079 –0.005
    3 [1s22p]3/2 212.0023 211.9956 212.1476 212.1689 211.982 0.003 0.072 0.082 –0.006
    4 [1s23s]1/2 3206.9762 3207.1 3206.7966 –0.004 –0.009
    5 [1s23p]1/2 3230.8215 3230.8 3230.8328 0.001 0.001
    6 [1s23p]3/2 3268.1729 3268.1 3268.1355 0.002 0.001
    7 [1s23d]3/2 3276.6290 3276.5 3276.5429 0.004 0.001
    8 [1s23d]5/2 3288.2659 3288.1 3288.1599 0.005 0.002
    9 [1s24s]1/2 4314.1977 4313.9 0.007
    10 [1s24p]1/2 4323.9937 4323.8 0.004
    11 [1s24p]3/2 4339.7142 4339.5 0.005
    12 [1s24d]3/2 4343.2364 4343.1 0.003
    13 [1s24d]5/2 4348.1528 4348.0 0.004
    14 [1s24f]5/2 4348.3516
    15 [1s24f]7/2 4350.7885
    注: a) NIST[26]数据库收录数据; b)文献[12]使用MCDF+CI方法的计算结果; c)文献[15]使用MBPT方法的计算结果; d)文献[16]使用S矩阵方法的计算结果.
    下载: 导出CSV

    表 3  Cr21+激发能(单位: eV)计算结果及其与NIST[26]和其他理论计算结果[10,15,16]的比较

    Table 3.  Excitation energy (in eV) data for Cr21+ and its comparison with NIST[26] and other theoretical computational results[10,15,16].

    编号 能级 当前计算 NIST a) 其他理论结果 与NIST的相对差异/%
    MCDF b) MBPT c) S-Matrix d) 当前计算 MCDF MBPT S-Matrix
    1 [1s22s]1/2 0 0 0
    2 [1s22p]1/2 44.3259 44.3322 44.4933 44.3417 44.3209 –0.014 0.363 0.021 –0.025
    3 [1s22p]3/2 55.6001 55.5958 55.7466 55.6222 55.5918 0.008 0.271 0.047 –0.007
    4 [1s23s]1/2 967.4110 967.40 967.2840 0.001 –0.012
    5 [1s23p]1/2 979.7019 979.68 979.6261 0.002 –0.005
    6 [1s23p]3/2 983.0371 983.02 982.9546 0.002 –0.007
    7 [1s23d]3/2 987.7139 987.70 987.5784 0.001 –0.012
    8 [1s23d]5/2 988.7666 988.75 988.6288 0.002 –0.012
    9 [1s24s]1/2 1300.2631 1300.12 1300.1223 0.011 0.000
    10 [1s24p]1/2 1305.3243 1305.28 1305.2034 0.003 –0.006
    11 [1s24p]3/2 1306.7288 1306.69 1306.6053 0.003 –0.006
    12 [1s24d]3/2 1308.6689 1308.66 1308.5255 0.001 –0.010
    13 [1s24d]5/2 1309.1131 1309.10 1308.9686 0.001 –0.010
    14 [1s24f]5/2 1309.2268 1309.0709
    15 [1s24f]7/2 1309.4480 1309.2923
    注: a) NIST[26]数据库收录数据; b)文献[10]使用MCDF+CI方法的计算结果; c)文献[15]使用MBPT方法的计算结果; d)文献[16]使用S矩阵方法的计算结果.
    下载: 导出CSV

    表 5  Mg9+跃迁速率(单位: s–1)计算结果及其与NIST[26]数据及其他理论计算结果[11]的比较

    Table 5.  Comparison of transition rates (in s–1) calculations for Mg9+ with NIST[26] data and other Ref. [11].

    跃迁编号 上能级编号 下能级编号 跃迁类型 当前计算 NIST a) 其他理论结果b) 与NIST的相对差异/%
    当前计算 其他理论结果
    1 2 1 E1 6.982×108 6.95×108 7.176×108 0.45 3.25
    2 5 1 E1 2.149×1011 2.17×1011 2.136×1011 –0.96 –1.55
    3 10 1 E1 9.744×1010 9.93×1010 9.700×1010 –1.88 –2.31
    4 5 4 E1 8.870×107 8.85×107 9.023×107 0.23 1.95
    5 10 4 E1 2.678×1010 2.69×1010 2.672×1010 –0.44 –0.67
    6 10 9 E1 2.060×107 1.91×107 2.090×107 7.84 9.40
    7 3 1 E1 7.530×108 7.51×108 7.736×108 0.27 3.01
    8 6 1 E1 2.135×1011 2.16×1011 2.122×1011 –1.18 –1.76
    9 11 1 E1 9.693×1010 9.88×1010 9.651×1010 –1.89 –2.31
    10 6 4 E1 9.616×107 9.67×107 9.771×107 –0.56 1.04
    11 11 4 E1 2.656×1010 2.68×1010 2.651×1010 –0.89 –1.10
    12 11 9 E1 2.238×107 1.91×107 2.267×107 17.17 18.66
    13 4 2 E1 3.456×1010 3.39×1010 3.428×1010 1.96 1.12
    14 9 2 E1 1.353×1010 1.34×1010 1.340×1010 0.95 0.00
    15 9 5 E1 9.319×109 9.47×109 9.324×109 –1.60 –1.54
    16 7 2 E1 5.569×1011 5.48×1011 5.580×1011 1.62 1.83
    17 12 2 E1 1.826×1011 1.85×1011 1.835×1011 –1.28 –0.79
    18 7 5 E1 3.315×106 3.38×106 3.096×106 –1.92 –8.42
    19 12 5 E1 5.791×1010 5.83×1010 5.795×1010 –0.66 –0.60
    20 12 10 E1 1.018×106 1.11×106 9.542×105 –8.28 –14.04
    21 10 7 E1 4.340×109 4.26×109 4.323×109 1.88 1.48
    22 11 7 E1 4.278×108 4.26×108 4.262×108 0.41 0.04
    23 14 7 E1 1.289×1011 1.290×1011
    24 14 12 E1 2.635×102 1.704×102
    25 4 3 E1 6.967×1010 6.81×1010 6.909×1010 2.31 1.45
    26 9 3 E1 2.724×1010 2.67×1010 2.694×1010 2.02 0.90
    27 9 6 E1 1.878×1010 1.88×1010 1.878×1010 –0.12 –0.11
    28 7 3 E1 1.111×1011 1.09×1011 1.113×1011 1.94 2.11
    29 12 3 E1 3.637×1010 3.66×1010 3.654×1010 –0.64 –0.16
    30 7 6 E1 5.339×105 5.31×105 4.968×105 0.54 –6.44
    31 12 6 E1 1.160×1010 1.16×1010 1.160×1010 –0.04 0.00
    32 12 11 E1 1.634×105 2.21×105 1.528×105 –26.04 –30.86
    33 8 3 E1 6.666×1011 6.55×1011 6.680×1011 1.77 1.98
    34 13 3 E1 2.183×1011 2.21×1011 2.194×1011 –1.20 –0.71
    35 8 6 E1 3.432×106 3.43×106 3.198×106 0.05 –6.77
    36 13 6 E1 6.950×1010 6.96×1010 6.955×1010 –0.14 –0.08
    37 13 11 E1 1.052×106 1.51×106 9.843×105 –30.36 –34.81
    38 11 8 E1 3.865×109 3.82×109 3.851×109 1.18 0.81
    39 14 8 E1 9.201×109 9.202×109
    40 14 13 E1 6.379 3.394
    41 15 8 E1 1.380×1011 1.381×1011
    42 15 13 E1 1.786×102 1.035×102
    43 7 1 E2 7.367×107 7.356×107
    44 12 1 E2 1.208×107 1.208×107
    45 7 4 E2 36.65 36.27
    46 12 4 E2 4.721×106 4.718×106
    47 12 9 E2 6.189 6.128
    48 8 1 E2 7.372×107 7.361×107
    49 13 1 E2 1.212×107 1.212×107
    50 8 4 E2 37.81 37.40
    51 13 4 E2 4.722×106 4.720×106
    52 13 9 E2 6.386 6.321
    53 3 2 E2 1.824×10–6 1.755×10–6
    54 6 2 E2 1.263×107 1.261×107
    55 11 2 E2 5.390×106 5.420×106
    56 6 5 E2 1.544×10–7 1.468×10–7
    57 11 5 E2 1.329×106 1.328×106
    58 11 10 E2 2.373×10–8 2.187×10–8
    59 14 2 E2 4.816×107 4.180×107
    60 14 5 E2 5.013×106 4.997×106
    61 14 10 E2 7.343×10–3 6.368×10–3
    62 9 7 E2 4.852×105 4.852×105
    63 12 7 E2 8.342×105 8.342×105
    64 8 7 E2 6.385×10–11 6.073×10–11
    65 13 7 E2 2.383×105 2.383×105
    66 13 12 E2 1.368×10–11 1.291×10–11
    67 5 3 E2 2.521×107 2.517×107
    68 10 3 E2 1.071×107 1.076×107
    69 10 6 E2 2.655×106 2.654×106
    70 6 3 E2 1.259×107 1.257×107
    71 11 3 E2 5.359×106 5.384×106
    72 11 6 E2 1.326×106 1.326×106
    73 14 3 E2 1.376×107 1.374×107
    74 14 6 E2 1.422×106 1.418×106
    75 14 11 E2 1.491×10–3 1.286×10–3
    76 15 3 E2 6.186×107 6.180×107
    77 15 6 E2 6.405×106 6.384×106
    78 15 11 E2 7.114×10–3 6.118×10–3
    79 9 8 E2 7.277×105 7.278×105
    80 12 8 E2 3.572×105 3.572×105
    81 13 8 E2 9.526×105 9.526×105
    82 15 14 E2 1.519×10–13 1.057×10–13
    83 4 1 M1 31.71 29.21
    84 9 1 M1 26.58 24.18
    85 9 4 M1 2.899×10–1 2.728×10–1
    86 7 1 M1 1.639 1.625
    87 12 1 M1 9.801×10–1 9.693×10–1
    88 7 4 M1 6.509×10–6 6.565×10–6
    89 12 4 M1 5.915×10–3 5.842×10–3
    90 12 9 M1 2.665×10–7 2.683×10–7
    91 5 2 M1 6.256 5.847
    92 10 2 M1 4.903 4.585
    93 10 5 M1 7.465×10–2 7.429×10–2
    94 3 2 M1 5.674×10–1 5.534×10–1
    95 6 2 M1 41.41 39.89
    96 11 2 M1 21.22 20.35
    97 6 5 M1 1.456×10–2 1.421×10–2
    98 11 5 M1 2.307 2.258
    99 11 10 M1 1.084×10–3 1.060×10–3
    100 9 7 M1 7.338×10–5 8.191×10–5
    101 12 7 M1 1.849×10–1 1.841×10–1
    102 8 7 M1 5.203×10–4 5.012×10–4
    103 13 7 M1 1.458×10–1 1.410×10–1
    104 13 12 M1 3.887×10–5 3.748×10–5
    105 5 3 M1 1.550×102 1.543×102
    106 10 3 M1 90.07 89.89
    107 10 6 M1 6.361 6.287
    108 6 3 M1 42.40 43.34
    109 11 3 M1 33.34 34.06
    110 11 6 M1 5.226×10–1 5.291×10–1
    111 14 3 M1 4.582×10–1 4.541×10–1
    112 14 6 M1 1.620×10–2 1.619×10–2
    113 14 11 M1 1.431×10–9 1.290×10–9
    114 12 8 M1 5.510×10–1 5.408×10–1
    115 13 8 M1 6.109×10–1 6.116×10–1
    116 15 14 M1 6.636×10–6 5.095×10–6
    注: a) NIST[26]数据库收录数据; b)文献[11]使用MCDF+CI方法的计算结果.
    下载: 导出CSV

    表 6  Cr21+跃迁速率(单位: s–1)计算结果及其与NIST[26]数据及其他理论计算结果[10]的比较

    Table 6.  Comparison of transition rates (in s–1) calculations for Cr21+ with NIST[26] data and other Ref. [10].

    跃迁编号 上能级编号 下能级编号 跃迁类型 当前计算 NIST a) 其他理论结果b) 与NIST的相对差异/%
    当前计算 其他理论结果
    1 2 1 E1 1.642×109 1.65×109 1.660×109 –0.51 0.61
    2 5 1 E1 5.277×1012 5.28×1012 5.260×1012 –0.06 –0.38
    3 10 1 E1 2.325×1012 2.5×1012 2.319×1012 –7.00 –7.24
    4 5 4 E1 2.142×108 2.160×108
    5 10 4 E1 6.891×1011 7.100×1011 6.880×1011 –2.95 –3.10
    6 10 9 E1 5.015×107 5.060×107
    7 3 1 E1 3.270×109 3.29×109 3.300×109 –0.62 0.30
    8 6 1 E1 5.129×1012 5.13×1012 5.110×1012 –0.02 –0.39
    9 11 1 E1 2.279×1012 2.5×1012 2.270×1012 –8.83 –9.20
    10 6 4 E1 4.428×108 4.450×108
    11 11 4 E1 6.661×1011 7.100×1011 6.650×1011 –6.18 –6.34
    12 11 9 E1 1.054×108 1.060×108
    13 4 2 E1 6.456×1011 6. ×1011 6.427×1011 7.60 7.12
    14 9 2 E1 2.585×1011 2.576×1011
    15 9 5 E1 1.800×1011 1.801×1011
    16 7 2 E1 1.296×1013 1.29×1013 1.300×1013 0.50 0.78
    17 12 2 E1 4.220×1012 4.1×1012 4.230×1012 2.93 3.17
    18 7 5 E1 3.793×107 3.730×107
    19 12 5 E1 1.366×1012 1.4×1012 1.370×1012 –2.43 –2.14
    20 12 10 E1 1.183×107 1.160×107
    21 10 7 E1 9.770×1010 9.759×1010
    22 11 7 E1 9.101×109 9.090×109
    23 14 7 E1 3.027×1012 3.030×1012
    24 14 12 E1 3.741×104 3.590×104
    25 4 3 E1 1.350×1012 1.3×1012 1.344×1012 3.88 3.38
    26 9 3 E1 5.386×1011 5.353×1011
    27 9 6 E1 3.754×1011 3.754×1011
    28 7 3 E1 2.562×1012 2.6×1012 2.320×1012 –1.48 –10.77
    29 12 3 E1 8.256×1011 7.9×1011 8.030×1011 4.51 1.65
    30 7 6 E1 1.502×106 1.461×106
    31 12 6 E1 2.745×1011 2.7×1011 2.745×1011 1.65 1.67
    32 12 11 E1 4.591×105 4.466×105
    33 8 3 E1 1.537×1013 1.54×1013 1.540×1013 –0.19 0.00
    34 13 3 E1 4.974×1012 4.9×1012 4.990×1012 1.52 1.84
    35 8 6 E1 1.662×107 1.630×107
    36 13 6 E1 1.639×1012 1.7×1012 1.640×1012 –3.58 –3.53
    37 13 11 E1 5.139×106 5.010×106
    38 11 8 E1 8.356×1010 8.349×1010
    39 14 8 E1 2.152×1011 2.152×1011
    40 14 13 E1 19.64 16.90
    41 15 8 E1 3.231×1012 3.230×1012
    42 15 13 E1 8.590×103 8.040×103
    43 7 1 E2 7.117×109 7.113×109
    44 12 1 E2 9.610×108 9.618×108
    45 7 4 E2 2.242×102 2.224×102
    46 12 4 E2 4.891×108 4.890×108
    47 12 9 E2 39.00 38.65
    48 8 1 E2 7.144×109 7.140×109
    49 13 1 E2 9.797×108 9.806×108
    50 8 4 E2 2.902×102 2.879×102
    51 13 4 E2 4.900×108 4.899×108
    52 13 9 E2 50.64 50.17
    53 3 2 E2 4.938×10–1 4.917×10–1
    54 6 2 E2 1.408×109 1.408×109
    55 11 2 E2 6.093×108 6.122×108
    56 6 5 E2 4.167×10–2 4.114×10–2
    57 11 5 E2 1.493×108 1.493×108
    58 11 10 E2 6.296×10–3 6.130×10–3
    59 14 2 E2 5.450×109 5.446×109
    60 14 5 E2 5.589×108 5.585×108
    61 14 10 E2 3.995×10–1 3.805×10–1
    62 9 7 E2 5.199×107 5.199×107
    63 12 7 E2 9.476×107 9.476×107
    64 8 7 E2 1.884×10–5 1.872×10–5
    65 13 7 E2 2.707×107 2.707×107
    66 13 12 E2 4.064×10–6 4.010×10–6
    67 5 3 E2 2.795×109 2.794×109
    68 10 3 E2 1.183×109 1.186×109
    69 10 6 E2 2.974×108 2.973×108
    70 6 3 E2 1.390×109 1.390×109
    71 11 3 E2 5.952×108 5.965×108
    72 11 6 E2 1.480×108 1.480×108
    73 14 3 E2 1.555×109 1.554×109
    74 14 6 E2 1.545×108 1.544×108
    75 14 11 E2 1.221×10–2 1.142×10–2
    76 15 3 E2 6.974×109 6.972×109
    77 15 6 E2 6.973×108 6.968×108
    78 15 11 E2 8.422×10–2 7.921×10–2
    79 9 8 E2 7.807×107 7.806×107
    80 12 8 E2 4.045×107 4.045×107
    81 13 8 E2 1.079×108 1.078×108
    82 15 14 E2 3.185×10–8 3.199×10–8
    83 4 1 M1 6.556×104 6.418×104
    84 9 1 M1 5.548×104 5.416×104
    85 9 4 M1 6.576×102 6.488×102
    86 7 1 M1 3.608×103 3.594×103
    87 12 1 M1 2.117×103 2.106×103
    88 7 4 M1 2.540×10–3 2.558×10–3
    89 12 4 M1 15.42 15.34
    90 12 9 M1 1.094×10–4 1.099×10–4
    91 5 2 M1 1.541×104 1.484×104
    92 10 2 M1 1.210×104 1.164×104
    93 10 5 M1 1.910×102 1.877×102
    94 3 2 M1 6.737×103 6.76×103 6.699×103 –0.33 –0.90
    95 6 2 M1 1.044×105 1.029×105
    96 11 2 M1 5.354×104 5.263×104
    97 6 5 M1 1.747×102 1.737×102
    98 11 5 M1 5.859×103 5.820×103
    99 11 10 M1 13.06 12.98
    100 9 7 M1 1.938×10–1 2.052×10–1
    101 12 7 M1 4.925×102 4.915×102
    102 8 7 M1 6.596 6.552
    103 13 7 M1 3.830×102 3.821×102
    104 13 12 M1 4.957×10–1 4.921×10–1
    105 5 3 M1 3.847×105 3.855×105
    106 10 3 M1 2.239×105 2.248×105
    107 10 6 M1 1.598×104 1.595×104
    108 6 3 M1 1.033×105 1.045×105
    109 11 3 M1 8.104×104 8.197×104
    110 11 6 M1 1.318×103 1.325×103
    111 14 3 M1 1.198×103 1.193×103
    112 14 6 M1 41.17 41.19
    113 14 11 M1 7.411×10–7 7.092×10–7
    114 12 8 M1 1.449×103 1.449×103
    115 13 8 M1 1.620×103 1.622×103
    116 15 14 M1 6.561×10–2 6.579×10–2
    注: a) NIST[26]数据库收录数据; b)文献[10]使用MCDF+CI方法的计算结果.
    下载: 导出CSV

    表 7  Mo39+跃迁速率(单位: s–1)计算结果及其与其他理论结果[12]的比较

    Table 7.  Comparison of transition rates (in s–1) calculations for Mo39+ with other Ref. [12].

    跃迁编号 上能级编号 下能级编号 跃迁类型 当前计算 NIST a) 其他理论结果b) 与NIST的相对差异
    当前计算 其他理论结果
    1 2 1 E1 3.549×109 3.54×109
    2 5 1 E1 6.057×1013 6.06×1013
    3 10 1 E1 2.625×1013
    4 5 4 E1 4.656×108
    5 10 4 E1 8.009×1012
    6 10 9 E1 1.085×108
    7 3 1 E1 5.448×1010 5.48×1010
    8 6 1 E1 5.520×1013 5.52×1013
    9 11 1 E1 2.466×1013
    10 6 4 E1 7.999×109
    11 11 4 E1 7.165×1012
    12 11 9 E1 1.949×109
    13 4 2 E1 6.644×1012 6.64×1012
    14 9 2 E1 2.681×1012
    15 9 5 E1 1.867×1012
    16 7 2 E1 1.442×1014 1.44×1014
    17 12 2 E1 4.742×1013
    18 7 5 E1 2.118×109
    19 12 5 E1 1.493×1013
    20 12 10 E1 6.753×108
    21 10 7 E1 1.211×1012
    22 11 7 E1 9.602×1010
    23 14 7 E1 3.331×1013
    24 14 12 E1 8.822×106
    25 4 3 E1 1.547×1013 1.55×1013
    26 9 3 E1 6.168×1012
    27 9 6 E1 4.307×1012
    28 7 3 E1 2.770×1013
    29 12 3 E1 8.805×1012
    30 7 6 E1 2.566×106
    31 12 6 E1 3.034×1012
    32 12 11 E1 8.156×105
    33 8 3 E1 1.663×1014 1.66×1014
    34 13 3 E1 5.364×1013
    35 8 6 E1 2.143×108
    36 13 6 E1 1.794×1013
    37 13 11 E1 6.846×107
    38 11 8 E1 9.245×1011
    39 14 8 E1 2.344×1012
    40 14 13 E1 22.52
    41 15 8 E1 3.528×1013
    42 15 13 E1 1.295×106
    43 7 1 E2 2.551×1011
    44 12 1 E2 3.348×1010
    45 7 4 E2 9.550×103
    46 12 4 E2 1.786×1010
    47 12 9 E2 1.729×103
    48 8 1 E2 2.584×1011
    49 13 1 E2 3.573×1010
    50 8 4 E2 2.102×104
    51 13 4 E2 1.797×1010
    52 13 9 E2 3.821×103
    53 3 2 E2 7.513×103
    54 6 2 E2 5.155×1010
    55 11 2 E2 2.269×1010
    56 6 5 E2 6.462×102
    57 11 5 E2 5.488×109
    58 11 10 E2 97.35
    59 14 2 E2 1.960×1011
    60 14 5 E2 2.172×1010
    61 14 10 E2 3.443×102
    62 9 7 E2 1.898×109
    63 12 7 E2 3.444×109
    64 8 7 E2 2.786×10–1
    65 13 7 E2 9.830×108
    66 13 12 E2 6.059×10–2
    67 5 3 E2 1.003×1011
    68 10 3 E2 4.105×1010
    69 10 6 E2 1.083×1010
    70 6 3 E2 4.946×1010
    71 11 3 E2 2.108×1010
    72 11 6 E2 5.347×109
    73 14 3 E2 5.576×1010
    74 14 6 E2 5.558×109
    75 14 11 E2 5.488×10–1
    76 15 3 E2 2.483×1011
    77 15 6 E2 2.528×1010
    78 15 11 E2 8.617
    79 9 8 E2 2.856×109
    80 12 8 E2 1.457×109
    81 13 8 E2 3.883×109
    82 15 14 E2 4.660×10–4
    83 4 1 M1 2.594×107
    84 9 1 M1 2.189×107
    85 9 4 M1 2.650×105
    86 7 1 M1 1.438×106
    87 12 1 M1 8.373×105
    88 7 4 M1 1.138
    89 12 4 M1 6.242×103
    90 12 9 M1 5.005×10–2
    91 5 2 M1 6.440×106
    92 10 2 M1 5.038×106
    93 10 5 M1 8.012×104
    94 3 2 M1 9.297×106
    95 6 2 M1 4.442×107
    96 11 2 M1 2.269×107
    97 6 5 M1 2.443×105
    98 11 5 M1 2.493×106
    99 11 10 M1 1.825×104
    100 9 7 M1 80.40
    101 12 7 M1 1.985×105
    102 8 7 M1 8.877×103
    103 13 7 M1 1.564×105
    104 13 12 M1 6.709×102
    105 5 3 M1 1.540×108
    106 10 3 M1 8.971×107
    107 10 6 M1 6.495×106
    108 6 3 M1 3.961×107
    109 11 3 M1 3.100×107
    110 11 6 M1 5.186×105
    111 14 3 M1 4.714×105
    112 14 6 M1 1.633×104
    113 14 11 M1 3.355×10–4
    114 12 8 M1 5.801×105
    115 13 8 M1 6.412×105
    116 15 14 M1 87.54
    注: a) NIST[26]数据库当前对该元素跃迁速率数据无收录; b)文献[12]使用MCDF+CI方法的计算结果.
    下载: 导出CSV
    Baidu
  • [1]

    Hu Z M, Xiong G, He Z C, Yang Z H, Numadate N, Huang C W, Yang J M, Yao K, Wei B R, Zou Y M, Wu C S, Ma Y L, Wu Y, Gao X, Nakamura N 2022 Phys. Rev. A 105 L030801Google Scholar

    [2]

    Wu C S, Xie L Y, Hu Z M, Gao X 2020 J. Quant. Spectrosc. Ra. 246 106912Google Scholar

    [3]

    Johnson W R, Blundell S A, Sapirstein J 1988 Phys. Rev. A 37 2764Google Scholar

    [4]

    Doschek G A, Feldman U 2010 J. Phys. B: At. Mol. Opt. Phys. 43 232001Google Scholar

    [5]

    Fujioka S, Takabe H, Yamamoto N, Salzmann D, Wang F, Nishimura H, Li Y, Dong Q, Wang S, Zhang Y, Rhee Y, Lee Y, Han J, Tanabe M, Fujiwara T, Nakabayashi Y, Zhao G, Zhang J, Mima K 2009 Nat. Phys. 5 821Google Scholar

    [6]

    Del Zanna G, Mason H E 2018 Living Rev. Sol. Phys. 15 5Google Scholar

    [7]

    Griem H R 1986 Principles of Plasma Spectroscopy (Dordrecht: Springer Netherlands) pp885–910

    [8]

    Foot C J 2005 Atomic physics (New York: Oxford University Press

    [9]

    Aggarwal K M, Keenan F P, Heeter R F 2010 Phys. Scripta 81 015303Google Scholar

    [10]

    Aggarwal K M, Keenan F P 2012 Atom. Data Nucl. Data 98 1003Google Scholar

    [11]

    Aggarwal K M, Keenan F P 2013 Atom. Data Nucl. Data 99 156Google Scholar

    [12]

    Khatri I, Goyal A, Aggarwal S, Singh A K, Mohan M 2016 Radiat. Phys. Chem. 123 46Google Scholar

    [13]

    刘尚宗, 颉录有, 丁晓彬, 董晨钟 2012 61 093106Google Scholar

    Liu S Z, Xie L Y, Ding X B, Dong C Z 2012 Acta Phys. Sin. 61 093106Google Scholar

    [14]

    胡木宏, 刘博文, 徐恩慧, 马玉龙, 吴勇 2020 原子与分子 37 819Google Scholar

    Hu M H, Liu B W, Xu E H, Ma Y L, Wu Y 2020 J. Atomic Mol. Phys. 37 819Google Scholar

    [15]

    Gu M F 2005 Atom. Data Nucl. Data 89 267Google Scholar

    [16]

    Sapirstein J, Cheng K T 2011 Phys. Rev. A 83 012504Google Scholar

    [17]

    Yerokhin V A, Surzhykov A, Müller A 2017 Phys. Rev. A 96 042505Google Scholar

    [18]

    Ge Z M, Wang Z W, Zhou Y J, He L M, Liu G G 2003 Chin. Phys. B 12 488Google Scholar

    [19]

    Wang Z W, Zhu X W, Chung K T 1992 J. Phys. B: At. Mol. Opt. Phys. 25 3915Google Scholar

    [20]

    Hu M H, Wang Z W, Zeng F, Wang T, Wang J 2011 Chin. Phys. B 20 083101Google Scholar

    [21]

    Wang Z W, Zhu X W, Chung K T 1992 Phys. Rev. A 46 6914Google Scholar

    [22]

    Wang Z W, Zhu X W, Chung K T 1993 Phys. Scripta 47 65Google Scholar

    [23]

    Wang L M, Liu T T, Yang W Q, Yan Z C 2023 Chin. Phys. B 32 033102Google Scholar

    [24]

    Cai J, Yu W W, Zhang N 2014 Chin. Phys. Lett. 31 093101Google Scholar

    [25]

    Nahar S N 2002 Astron. Astrophys. 389 716Google Scholar

    [26]

    NIST Atomic Spectra Database (ver. 5.12), Kramida A, Ralchenko Y, Reader J, NIST ASD Team (2024) https:// physics.nist.gov/asd [2025-4-11]

    [27]

    Dyall K G, Grant I P, Johnson C T, Parpia F A, Plummer E P 1989 Comput. Phys. Commun. 55 425Google Scholar

    [28]

    Froese Fischer C, Gaigalas G, Jönsson P, Bieroń J 2019 Comput. Phys. Commun. 237 184Google Scholar

    [29]

    Grant I P 2007 Relativistic Quantum Theory of Atoms and Molecules (New York: Springer-Verlag

    [30]

    刘博文 2021 硕士学位论文 (大连: 辽宁师范大学)

    Liu B W 2021 M. S. Thesis (Dalian: Liaoning Normal University

    [31]

    Martin G A, Wiese W L 1976 J. Phys. Chem. Ref. Data 5 537Google Scholar

  • [1] 魏向杰, 孙邓, 王黎明, 严宗朝. 类锂离子体系自旋四重态费米接触项的精密计算.  , 2022, 71(20): 203101. doi: 10.7498/aps.71.20220923
    [2] 文大东, 邓永和, 戴雄英, 吴安如, 田泽安. 钽过冷液体等温晶化的原子层面机制.  , 2020, 69(19): 196101. doi: 10.7498/aps.69.20200665
    [3] 刘琪, 管鹏飞. La65X35(X=Ni,Al)非晶合金原子结构的第一性原理研究.  , 2018, 67(17): 178101. doi: 10.7498/aps.67.20180992
    [4] 王金霞, 师应龙, 张登红, 颉录有, 董晨钟. 类锂离子双电子复合过程中辐射光子角分布和极化特性的理论研究.  , 2013, 62(23): 233401. doi: 10.7498/aps.62.233401
    [5] 刘尚宗, 颉录有, 丁晓彬, 董晨钟. 相对论效应对类锂离子能级结构及辐射跃迁性质的影响.  , 2012, 61(9): 093106. doi: 10.7498/aps.61.093106
    [6] 卢硕, 张跃, 尚家香. Si2CN4(010)表面特性的第一性原理研究.  , 2011, 60(2): 027302. doi: 10.7498/aps.60.027302
    [7] 郭古青, 杨亮, 张国庆. Zr48Cu45Al7大块金属玻璃的原子结构研究.  , 2011, 60(1): 016103. doi: 10.7498/aps.60.016103
    [8] 桑萃萃, 王永军, 万建杰, 丁晓彬, 董晨钟. 高离化态金离子的辐射复合及其退激发过程的理论研究.  , 2010, 59(6): 3871-3877. doi: 10.7498/aps.59.3871
    [9] 刘福, 周继承, 谭晓超. 3C-SiC(001)-(2×1)表面原子与电子结构研究.  , 2009, 58(11): 7821-7825. doi: 10.7498/aps.58.7821
    [10] 王向丽, 董晨钟, 桑萃萃. Ne原子的1s光电离及其Auger衰变过程的理论研究.  , 2009, 58(8): 5297-5303. doi: 10.7498/aps.58.5297
    [11] 师应龙, 董晨钟. C Ⅱ离子1s内壳层激发态的结构和衰变特性的理论研究.  , 2009, 58(4): 2350-2357. doi: 10.7498/aps.58.2350
    [12] 桑萃萃, 万建杰, 董晨钟, 丁晓彬, 蒋 军. 锂原子光电离过程中的弛豫效应.  , 2008, 57(4): 2152-2160. doi: 10.7498/aps.57.2152
    [13] 申晓志, 袁 萍, 李冀光, 董晨钟, 颉录有, 师应龙. NⅡ离子2p4f—2p3d辐射跃迁概率的理论研究.  , 2007, 56(10): 5715-5722. doi: 10.7498/aps.56.5715
    [14] 常志文, 王清林, 罗有华. 自旋多重度对钛三聚体原子结构的影响.  , 2006, 55(9): 4553-4556. doi: 10.7498/aps.55.4553
    [15] 徐彭寿, 李拥华, 潘海斌. β-SiC(001)-(2×1)表面结构的第一性原理研究.  , 2005, 54(12): 5824-5829. doi: 10.7498/aps.54.5824
    [16] 李拥华, 徐彭寿, 潘海滨, 徐法强, 谢长坤. GaN(1010)表面结构的第一性原理计算.  , 2005, 54(1): 317-322. doi: 10.7498/aps.54.317
    [17] 姜旻昊, 孟续军. 用Hartree-Fock-Slater-Boltzmann-Saha模型研究等离子体细致组态原子结构及其状态方程.  , 2005, 54(2): 587-593. doi: 10.7498/aps.54.587
    [18] 孟续军, 宗晓萍, 白 云, 孙永盛, 张景琳. 混合物质原子结构的自洽场计算.  , 2000, 49(11): 2133-2138. doi: 10.7498/aps.49.2133
    [19] 韩利红, 苟秉聪, 王 菲. 类锂等电子系列高位三激发态2p2np4So能量和到1s2pmp4P态的辐射跃迁.  , 2000, 49(11): 2139-2145. doi: 10.7498/aps.49.2139
    [20] 王宛珏. 类氮KⅩⅢ,CaⅪⅤ,ScⅩⅤ和TiⅩⅥ精细结构能级和跃迁波长的相对论多组态Dirac-Fock计算.  , 1992, 41(5): 726-731. doi: 10.7498/aps.41.726
计量
  • 文章访问数:  375
  • PDF下载量:  12
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-05-08
  • 修回日期:  2025-07-14
  • 上网日期:  2025-07-17
  • 刊出日期:  2025-08-05

/

返回文章
返回
Baidu
map