搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

类碳离子(Z = 10, 14, 32, 36, 50)1s22s22p2和1s22s2p3组态的能级和电偶极跃迁

胡木宏 何纪铮

引用本文:
Citation:

类碳离子(Z = 10, 14, 32, 36, 50)1s22s22p2和1s22s2p3组态的能级和电偶极跃迁

胡木宏, 何纪铮

Energy levels and electric dipole transitions of 1s22s22p2 and 1s22s2p3 configurations in carbon-like ions (Z = 10, 14, 32, 36, 50)

HU Muhong, HE Jizheng
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 利用多组态Dirac-Hartree-Fock方法对类碳等电子序列(Z = 10, 14, 32, 36, 50)1s22s22p2和1s22s2p3组态的能级结构和电偶极跃迁行为进行理论研究. 在构建充分包含电子关联效应、规模适当的波函数后, 考虑Breit相互作用、量子电动力学效应和原子核质量效应, 比较分析了价-价关联效应、实-价关联效应和实-实关联效应对原子态激发能的影响, 完成了原子态激发能的高精度理论计算. 与其他理论结果相比, 本文计算的Ne V离子的激发能结果与NIST(National Institute of Standards and Technology)数据最为接近; 其他离子的激发能也具有较好的精度. 在此基础上, 结合LS耦合的原子态混合成分和NIST数据, 对出现的原子态命名情况进行分析, 推测了相应的原子态命名. 本文还计算了组态间电偶极跃迁的谱线波长、跃迁速率、线强和加权振子强度, Ne V和Si IX离子的谱线波长与NIST数据符合得很好, 相对误差小于0.62%; 跃迁速率与其他理论结果比较一致. 另外, 本文计算得到的Babushkin和Coulomb两种规范的电偶极跃迁参数具有良好的一致性, 进一步证明了本文采用的理论方法的准确性和可靠性. 本文数据集可在https://www.doi.org/10.57760/sciencedb.j00213.00145中访问获取.
    The atomic energy level structures and transition properties of 1s22s22p2 ground configuration and 1s22s2p3 excited configuration in carbon-like ions with Z = 10, 14, 32, 36, 50 are investigated theoretically using the fully relativistic multi-configuration Dirac-Hartree-Fock (MCDHF) method.Based on the wavefunction constructed with careful consideration of electron correlations, the theoretical calculations are completed by taking into account the Breit interaction, quantum electrodynamic effect and nuclear mass effect. Then the effects of three types of electron correlations, namely valence-valence, core-valence, and core-core correlations, on energy levels are studied in detail, and high-precision excitation energies are obtained. Compared with other theoretical results, the calculated excitation energies for Ne V ion are the closest to the NIST (National Institute of Standards and Technology) data, and the excitation energies of other ions also possess relatively high precision. Additionally, by combining the NIST data and the LS coupled atomic state compositions, the fuzziness in identifying atomic states generated from the code is analyzed, and the corresponding renamed atomic states are presented.For electric dipole transitions, the transition wavelengths of Ne V and Si IX ions reported in this work are in good agreement with the available NIST data, with the relative errors being less than 0.62%. Their transition ratesaccord well with other theoretical results. And for majority of electric dipole transitions, the electric dipole transition parameters calculated in Babushkin and Coulomb gauges are well consistent with each other, which demonstrates the feasibility and reliability of the MCDHF method for theoretically calculating the energy structures and spectral properties of 1s22s22p2 and 1s22s2p3 configurations in carbon-like ions. The results cover a wide range of levels and transitions for carbon-like ions, and the data are expected to enrich the fundamental database for carbon-like ions and provide valuable theoretical references for relevant studies. The datasets presented in this paper are openly available at https://doi.org/10.57760/sciencedb.j00213.00145.
  • 图 1  VV关联、VV+CV关联和VV+CV+CC关联对Ne V和Si IX离子1s22s22p2, 1s22s2p3组态原子态激发能的影响 (a) Ne V离子; (b) Si IX离子

    Fig. 1.  Effects of VV, VV+CV and VV+CV+CC correlations on the excitation energies of atomic states for 1s22s22p2 and 1s22s2p3 configurations in Ne V and Si IX ions: (a) Ne V ion; (b) Si IX ion.

    表 1  Ne V离子(Z = 10, 14, 32, 36, 50)1s22s22p2和1s22s2p3组态在AS2—AS7活性空间的原子态能级

    Table 1.  Energies of atomic states for 1s22s22p2 and 1s22s2p3 configurations in Ne V ion (Z = 10, 14, 32, 36, 50) within AS2–AS7 active spaces.

    Lv. No.StatesEAS2/a.u.EAS3/a.u.EAS4/a.u.EAS5/a.u.EAS6/a.u.EAS7/a.u.
    11s22s22p2 3P0–120.79410–120.82751–120.83972–120.84535–120.84811–120.84951
    21s22s22p2 3P1–120.79224–120.82564–120.83784–120.84347–120.84623–120.84763
    31s22s22p2 3P2–120.78908–120.82246–120.83465–120.84028–120.84304–120.84444
    41s22s22p2 1D2–120.64690–120.68647–120.70016–120.70634–120.70949–120.71101
    51s22s22p2 1S0–120.48406–120.52863–120.54349–120.55022–120.55385–120.55545
    61s22s2p3 5S2–120.40336–120.43148–120.44190–120.44575–120.44802–120.44863
    71s22s2p3 3D3–119.98436–120.02513–120.03869–120.04426–120.04727–120.04851
    81s22s2p3 3D2–119.98402–120.02480–120.03837–120.04394–120.04695–120.04819
    91s22s2p3 3D1–119.98391–120.02469–120.03826–120.04383–120.04684–120.04808
    101s22s2p3 3P2–119.82820–119.87432–119.88934–119.89610–119.89966–119.90109
    111s22s2p3 3P1–119.82817–119.87430–119.88932–119.89607–119.89963–119.90107
    121s22s2p3 3P0–119.82801–119.87414–119.88916–119.89592–119.89948–119.90092
    131s22s2p3 1D2–119.53581–119.58668–119.60269–119.60989–119.61344–119.61526
    141s22s2p3 3S1–119.50144–119.54851–119.56397–119.57073–119.57426–119.57567
    151s22s2p3 1P1–119.37379–119.43100–119.44855–119.45719–119.46129–119.46322
    下载: 导出CSV

    表 2  Si IX离子(Z = 10, 14, 32, 36, 50)1s22s22p2和1s22s2p3组态在AS2—AS7活性空间的原子态能级

    Table 2.  Energies of atomic states for 1s22s22p2 and 1s22s2p3 configurations in Si IX ion (Z = 10, 14, 32, 36, 50) within AS2–AS7 active spaces.

    Lv. No.StatesEAS2/a.u.EAS3/a.u.EAS4/a.u.EAS5/a.u.EAS6/a.u.EAS7/a.u.
    11s22s22p2 3P0–252.15395–252.18931–252.20215–252.20788–252.21083–252.21243
    21s22s22p2 3P1–252.14278–252.17808–252.19089–252.19662–252.19957–252.20117
    31s22s22p2 3P2–252.12503–252.16031–252.17311–252.17883–252.18178–252.18338
    41s22s22p2 1D2–251.90392–251.94520–251.95960–251.96589–251.96924–251.97100
    51s22s22p2 1S0–251.64493–251.69062–251.70618–251.71310–251.71691–251.71873
    61s22s2p3 5S2–251.48251–251.51136–251.52262–251.52635–251.52888–251.52969
    71s22s2p3 3D3–250.81441–250.85677–250.87149–250.87712–250.88042–250.88184
    81s22s2p3 3D2–250.81405–250.85646–250.87119–250.87683–250.88014–250.88155
    91s22s2p3 3D1–250.81338–250.85581–250.87053–250.87617–250.87949–250.88090
    101s22s2p3 3P2–250.57107–250.61784–250.63380–250.64064–250.64417–250.64576
    111s22s2p3 3P1–250.57078–250.61757–250.63353–250.64037–250.64391–250.64550
    121s22s2p3 3P0–250.57064–250.61738–250.63334–250.64017–250.64370–250.64529
    131s22s2p3 1D2–250.12207–250.17503–250.19228–250.19964–250.20349–250.20541
    141s22s2p3 3S1–250.09823–250.14722–250.16358–250.17072–250.17431–250.17598
    151s22s2p3 1P1–249.87552–249.93338–249.95187–249.96048–249.96455–249.96656
    下载: 导出CSV

    表 5  Sn XLV离子(Z = 10, 14, 32, 36, 50)1s22s22p2和1s22s2p3组态在AS2—AS7活性空间的原子态能级

    Table 5.  Energies of atomic states for 1s22s22p2 and 1s22s2p3 configurations in Sn XLV ion (Z = 10, 14, 32, 36, 50) within AS2–AS7 active spaces.

    Lv. No. States EAS2/a.u. EAS3/a.u. EAS4/a.u. EAS5/a.u. EAS6/a.u. EAS7/a.u.
    1 1s22s22p2 3P0 –3718.67573 –3718.72761 –3718.75354 –3718.76491 –3718.77451 –3718.77886
    2 1s22s22p2 3P1 –3710.09251 –3710.13935 –3710.16324 –3710.17387 –3710.18302 –3710.18713
    3 1s22s22p2 1D2 –3709.54675 –3709.59733 –3709.62247 –3709.63358 –3709.64302 –3709.64729
    4 1s22s2p3 $ {}^3{\text{P}}_{2}^{\text{a}} $
    (1s22s2p3 5S2)
    –3704.00426 –3704.05462 –3704.08080 –3704.09038 –3704.09880 –3704.10330
    5 1s22s2p3 3D1 –3701.92161 –3701.98187 –3702.01100 –3702.02220 –3702.03131 –3702.03627
    6 1s22s22p2 3P2 –3700.55275 –3700.60034 –3700.62417 –3700.63477 –3700.64383 –3700.64792
    7 1s22s22p2 1S0 –3699.20097 –3699.25462 –3699.28068 –3699.29246 –3699.30198 –3699.30638
    8 1s22s2p3 3D2 –3695.86768 –3695.91436 –3695.93885 –3695.94773 –3695.95582 –3695.95981
    9 1s22s2p3 3D3 –3694.68488 –3694.73762 –3694.76403 –3694.77380 –3694.78232 –3694.78666
    10 1s22s2p3 3P0 –3693.45937 –3693.51678 –3693.54478 –3693.55576 –3693.56463 –3693.56911
    11 1s22s2p3 3S1 –3692.98094 –3693.03801 –3693.06571 –3693.07645 –3693.08525 –3693.08974
    12 1s22s2p3 1D2 –3692.60294 –3692.66348 –3692.69221 –3692.70334 –3692.71240 –3692.71708
    13 1s22s2p3 3P1 –3692.45644 –3692.51749 –3692.54662 –3692.55827 –3692.56736 –3692.57210
    14 1s22s2p3 $ {}^3{\text{P}}_{2}^{\text{b}} $
    (1s22s2p3 3P2)
    –3684.80095 –3684.85516 –3684.88199 –3684.89234 –3684.90090 –3684.90516
    15 1s22s2p3 1P1 –3682.88893 –3682.94955 –3682.97832 –3682.98984 –3682.99885 –3683.00340
    下载: 导出CSV

    表 3  Ge XXVII离子(Z = 10, 14, 32, 36, 50)1s22s22p2和1s22s2p3组态在AS2—AS7活性空间的原子态能级

    Table 3.  Energies of atomic states for 1s22s22p2 and 1s22s2p3 configurations in Ge XXVII ion (Z = 10, 14, 32, 36, 50) within AS2–AS7 active spaces.

    Lv. No.StatesEAS2/a.u.EAS3/a.u.EAS4/a.u.EAS5/a.u.EAS6/a.u.EAS7/a.u.
    11s22s22p2 3P0–1454.10079–1454.14307–1454.16034–1454.16743–1454.17263–1454.17467
    21s22s22p2 3P1–1453.10195–1453.14197–1453.15849–1453.16527–1453.17032–1453.17228
    31s22s22p2 3P2–1452.78799–1452.83052–1452.84779–1452.85486–1452.86009–1452.86214
    41s22s22p2 1D2–1451.53539–1451.57840–1451.59571–1451.60281–1451.60804–1451.61011
    51s22s22p2 1S0–1450.76903–1450.81702–1450.83602–1450.84417–1450.84969–1450.85198
    61s22s2p3 5S2–1450.28531–1450.31956–1450.33517–1450.34021–1450.34444–1450.34582
    71s22s2p3 3D1–1448.73688–1448.78565–1448.80540–1448.81262–1448.81780–1448.81986
    81s22s2p3 3D2–1448.57279–1448.61893–1448.63791–1448.64468–1448.64969–1448.65163
    91s22s2p3 3D3–1448.19745–1448.24367–1448.26262–1448.26932–1448.27433–1448.27629
    101s22s2p3 3P0–1447.52469–1447.57456–1447.59476–1447.60251–1447.60777–1447.60988
    111s22s2p3 3P1–1447.39793–1447.44735–1447.46733–1447.47490–1447.48012–1447.48222
    121s22s2p3 3P2–1447.18261–1447.23273–1447.25287–1447.26044–1447.26570–1447.26784
    131s22s2p3 3S1–1446.63584–1446.69039–1446.71173–1446.72030–1446.72580–1446.72816
    141s22s2p3 1D2–1446.02983–1446.08429–1446.10553–1446.11376–1446.11928–1446.12166
    151s22s2p3 1P1–1445.07774–1445.13513–1445.15726–1445.16628–1445.17197–1445.17447
    下载: 导出CSV

    表 4  Kr XXXI离子(Z = 10, 14, 32, 36, 50)1s22s22p2和1s22s2p3组态在AS2—AS7活性空间的原子态能级

    Table 4.  Energies of atomic states for 1s22s22p2 and 1s22s2p3 configurations in Kr XXXI ion (Z = 10, 14, 32, 36, 50) within AS2–AS7 active spaces.

    Lv. No. States EAS2/a.u. EAS3/a.u. EAS4/a.u. EAS5/a.u. EAS6/a.u. EAS7/a.u.
    1 1s22s22p2 3P0 –1861.56151 –1861.60560 –1861.62435 –1861.63204 –1861.63807 –1861.64038
    2 1s22s22p2 3P1 –1859.75712 –1859.79831 –1859.81605 –1859.82334 –1859.82916 –1859.83136
    3 1s22s22p2 1D2 –1859.37952 –1859.42371 –1859.44237 –1859.45002 –1859.45605 –1859.45838
    4 1s22s22p2 3P2 –1857.30056 –1857.34410 –1857.36240 –1857.36994 –1857.37588 –1857.37817
    5 1s22s22p2 1S0 –1856.41418 –1856.46294 –1856.48307 –1856.49168 –1856.49795 –1856.50049
    6 1s22s2p3 5S2 –1856.21811 –1856.25577 –1856.27332 –1856.27915 –1856.28423 –1856.28593
    7 1s22s2p3 3D1 –1854.57783 –1854.62889 –1854.65031 –1854.65819 –1854.66416 –1854.66649
    8 1s22s2p3 3D2 –1854.02497 –1854.07072 –1854.09051 –1854.09748 –1854.10309 –1854.10518
    9 1s22s2p3 3D3 –1853.42728 –1853.47463 –1853.49484 –1853.50197 –1853.50769 –1853.50987
    10 1s22s2p3 3P0 –1852.64544 –1852.69654 –1852.71806 –1852.72627 –1852.73225 –1852.73458
    11 1s22s2p3 3P1 –1852.43863 –1852.48938 –1852.51066 –1852.51867 –1852.52461 –1852.52694
    12 1s22s2p3 ${}^1{\text{D}}_{2}^{\text{a}}$
    (1s22s2p3 3P2)
    –1852.14350 –1852.19611 –1852.21786 –1852.22601 –1852.23208 –1852.23450
    13 1s22s2p3 3S1 –1851.74091 –1851.79651 –1851.81920 –1851.82819 –1851.83442 –1851.83700
    14 1s22s2p3 ${}^1{\text{D}}_{2}^{\text{b}}$
    (1s22s2p3 1D2)
    –1850.47133 –1850.52479 –1850.54678 –1850.55518 –1850.56129 –1850.56378
    15 1s22s2p3 1P1 –1849.27920 –1849.33674 –1849.35991 –1849.36921 –1849.37556 –1849.37824
    下载: 导出CSV

    表 6  Ne V离子(Z = 10, 14, 32, 36, 50)1s22s22p2和1s22s2p3组态原子态的激发能

    Table 6.  Excitation energies of states for 1s22s22p2 and 1s22s2p3 configurations in Ne V ions (Z = 10, 14, 32, 36, 50).

    Lv. No. State Ecal
    /cm–1
    EMBPT[18]
    /cm–1
    EHFR[27]
    /cm–1
    ETFDA[28]
    /cm–1
    EMCHF[31]
    /cm–1
    EMCDHF1[22]
    /cm–1
    EMCDHF2[23]
    /cm–1
    ENIST[40]
    /cm–1
    δ/% δ/cm–1
    1 1s22s22p2 3P0 0 0 0 0 0 0 0
    2 1s22s22p2 3P1 411.82 410.6660 413.52 411.4 412 411.227 0.1442 0.593
    3 1s22s22p2 3P2 1111.74 1105.544 1109.89 1108.6 1112 1109.467 0.2049 2.273
    4 1s22s22p2 1D2 30394.93 29963.98 30388.87 30428.1 30290.67 0.3442 104.26
    5 1s22s22p2 1S0 64537.13 64660.65 63932.41 64141.3 63915.4 0.9727 621.73
    6 1s22s2p3 5S2 87979.45 89949.36 89417.23 88176.6 87782 88399.5 0.4752 420.05
    7 1s22s2p3 3D3 175793.08 175362.7 177091.78 175906.6 175832.3 0.0223 39.22
    8 1s22s2p3 3D2 175863.71 175431.2 177161.79 175976.7 175902.7 0.0222 38.99
    9 1s22s2p3 3D1 175887.35 175453.0 177184.54 176000.3 175925.0 0.0214 37.65
    10 1s22s2p3 3P2 208147.27 208283.8 209479.97 208347.0 208151.3 0.0019 4.03
    11 1s22s2p3 3P1 208151.98 208288.6 209485.10 208351.9 208153.3 0.0006 1.32
    12 1s22s2p3 3P0 208185.58 208321.7 209519.18 208388.7 208185 0.0003 0.58
    13 1s22s2p3 1D2 270878.89 269549.6 271972.52 270855.6 270552.9 0.1205 325.99
    14 1s22s2p3 3S1 279567.62 278211.2 280689.94 279582.4 279371.2 0.0703 196.42
    15 1s22s2p3 1P1 304246.43 302434.5 305326.16 304289.6 303819.2 0.1406 427.23
    下载: 导出CSV

    表 10  Sn XLV离子(Z = 10, 14, 32, 36, 50)1s22s22p2和1s22s2p3组态原子态的激发能

    Table 10.  Excitation energies of states for 1s22s22p2 and 1s22s2p3 configurations in Sn XLV ions (Z = 10, 14, 32, 36, 50).

    Lv. No. State Ecal
    /cm–1
    EMBPT[18]
    /cm–1
    EHFR[27]
    /cm–1
    ETFDA[28]
    /cm–1
    EMCHF[31]
    /cm–1
    EMCDHF1[22]
    /cm–1
    EMCDHF2[23]
    /cm–1
    ENIST[40]
    /cm–1
    δ/% δ/cm–1
    1 1s22s22p2 3P0 0 0
    2 1s22s22p2 3P1 1885654 1885837 1885461
    3 1s22s22p2 1D2 2004135 2004255
    4 1s22s2p3 $ {}^3{\text{P}}_{2}^{\text{a}} $
    (1s22s2p3 5S2)
    3220891 3222265 3220810
    5 1s22s2p3 3D1 3674549 3675597
    6 1s22s22p2 3P2 3979255 3979184 3979010
    7 1s22s22p2 1S0 4273686 4273568
    8 1s22s2p3 3D2 5008169 5009638
    9 1s22s2p3 3D3 5265644 5266985
    10 1s22s2p3 3P0 5532862 5534116
    11 1s22s2p3 3S1 5638071 5639355
    12 1s22s2p3 1D2 5719867 5721043
    13 1s22s2p3 3P1 5751679 5752781
    14 1s22s2p3 $ {}^3{\text{P}}_{2}^{\text{b}} $
    (1s22s2p3 3P2)
    7434367 7435689
    15 1s22s2p3 1P1 7851752 7852863
    下载: 导出CSV

    表 7  Si IX离子(Z = 10, 14, 32, 36, 50)1s22s22p2和1s22s2p3组态原子态的激发能

    Table 7.  Excitation energies of states for 1s22s22p2 and 1s22s2p3 configurations in Si IX ions (Z = 10, 14, 32, 36, 50).

    Lv. No. State Ecal
    /cm–1
    EMBPT[18]
    /cm–1
    EHFR[27]
    /cm–1
    ETFDA[28]
    /cm–1
    EMCHF[31]
    /cm–1
    EMCDHF1[22]
    /cm–1
    EMCDHF2[23]
    /cm–1
    ENIST[40]
    /cm–1
    δ/% δ/cm–1
    1 1s22s22p2 3P0 0 0 0 0 0 0 0 0 0
    2 1s22s22p2 3P1 2472 2539.017 2533 2637 2582 2540 2473 2545.0 2.8684 73
    3 1s22s22p2 3P2 6376 6404.025 6721 6753 6452 6411 6377 6414 0.5925 38
    4 1s22s22p2 1D2 52987 52731.80 50726 56291 53076 53070 52925.9 0.1154 61.1
    5 1s22s22p2 1S0 108352 108410.6 119027 132263 107826 108017 107799 0.5130 553
    6 1s22s2p3 5S2 149841 151487.8 146529 128561 154077 150120 149624 150770 0.6162 929
    7 1s22s2p3 3D3 292026 292093.6 286103 285832 296224 292323 292232 0.0705 206
    8 1s22s2p3 3D2 292089 292151.7 285850 286020 296405 292384 292296 0.0708 207
    9 1s22s2p3 3D1 292231 292290.4 285798 285866 296274 292525 292441 0.0718 210
    10 1s22s2p3 3P1 343838 344277.7 332017 337703 348047 344313 344009 0.0497 171
    11 1s22s2p3 3P0 343895 344330.1 332217 337800 348157 344202 344075 0.0523 180
    12 1s22s2p3 3P2 343941 344390.6 331907 337756 348103 344256 344118 0.0514 177
    13 1s22s2p3 1D2 440482 439823.7 431290 449098 444583 440751 440403 0.0179 79
    14 1s22s2p3 3S1 446940 446248.8 436901 454797 451039 447194 446942 0.0004 2
    15 1s22s2p3 1P1 492902 491959.4 477444 500967 497004 493218 492755 0.0298 147
    下载: 导出CSV

    表 8  Ge XXVII离子(Z = 10, 14, 32, 36, 50)1s22s22p2和1s22s2p3组态原子态的激发能

    Table 8.  Excitation energies of states for 1s22s22p2 and 1s22s2p3 configurations in Ge XXVII ions (Z = 10, 14, 32, 36, 50).

    Lv. No. State Ecal
    /cm–1
    EMBPT[18]
    /cm–1
    EHFR[27]
    /cm–1
    ETFDA[28]
    /cm–1
    EMCHF[31]
    /cm–1
    EMCDHF1[22]
    /cm–1
    EMCDHF2[23]
    /cm–1
    ENIST[40]
    /cm–1
    δ/% δ/cm–1
    1 1s22s22p2 3P0 0 0 0 0 0
    2 1s22s22p2 3P1 219998 220040.9 219953 219880 0.0537 118
    3 1s22s22p2 3P2 288064 288046.4 288122 287736 0.1140 328
    4 1s22s22p2 1D2 562851 562703.1
    5 1s22s22p2 1S0 729240 729004.9
    6 1s22s2p3 5S2 840329 841558.8 840075
    7 1s22s2p3 3D1 1175235 1175835
    8 1s22s2p3 3D2 1212157 1212816
    9 1s22s2p3 3D3 1294534 1295181
    10 1s22s2p3 3P0 1440794 1441490
    11 1s22s2p3 3P1 1468812 1469518
    12 1s22s2p3 3P2 1515861 1516612 1516690 0.0547 829
    13 1s22s2p3 3S1 1634306 1634571 1633620 0.0420 686
    14 1s22s2p3 1D2 1767417 1767693
    15 1s22s2p3 1P1 1975301 1975518
    下载: 导出CSV

    表 9  Kr XXXI离子(Z = 10, 14, 32, 36, 50)1s22s22p2和1s22s2p3组态原子态的激发能

    Table 9.  Excitation energies of states for 1s22s22p2 and 1s22s2p3 configurations in Kr XXXI ions (Z = 10, 14, 32, 36, 50).

    Lv. No. State Ecal
    /cm–1
    EMBPT[18]
    /cm–1
    EHFR[27]
    /cm–1
    ETFDA[28]
    /cm–1
    EMCHF[31]
    /cm–1
    EMCDHF1[22]
    /cm–1
    EMCDHF2[23]
    /cm–1
    ENIST[40]
    /cm–1
    δ/% δ/cm–1
    1 1s22s22p2 3P0 0 0 0 0 0
    2 1s22s22p2 3P1 397033 397090.1 396962 396820 0.0537 213
    3 1s22s22p2 1D2 478893 478885.2
    4 1s22s22p2 3P2 935443 935288.5 478950 478200 95.6175 457243
    5 1s22s22p2 1S0 1128073 1127837
    6 1s22s2p3 5S2 1175162 1176400 1174960
    7 1s22s2p3 3D1 1530587 1531276 1530200 0.0253 387
    8 1s22s2p3 3D2 1653780 1654590 1653800 0.0012 20
    9 1s22s2p3 3D3 1784435 1785211 1783500 0.0524 935
    10 1s22s2p3 3P0 1954591 1955386 1955900 0.0669 1309
    11 1s22s2p3 3P1 2000162 2000973 1999100 0.0531 1062
    12 1s22s2p3 ${}^1{\text{D}}_{2}^{\text{a}}$
    (1s22s2p3 3P2)
    2064345 2065150 2062900 0.0700 1445
    13 1s22s2p3 3S1 2151587 2152024 2151900 0.0145 313
    14 1s22s2p3 ${}^1{\text{D}}_{2}^{\text{b}}$
    (1s22s2p3 1D2)
    2431025 2431535
    15 1s22s2p3 1P1 2691220 2691625
    下载: 导出CSV

    表 11  Ne V离子(Z = 10, 14, 32, 36, 50)1s22s22p2和1s22s2p3组态的混合系数和寿命

    Table 11.  Mixing coefficients and lifetimes of 1s22s22p2 and 1s22s2p3 configurations in Ne V ion with Z = 10, 14, 32, 36, 50.

    Lv. No. State LS-composition τl/ns τv/ns τ[17]/ns τ[20]/ns τ[41]/ns
    1 1s22s22p2 3P0 0.98
    2 1s22s22p2 3P1 0.98 7.8711
    3 1s22s22p2 3P2 0.98 2.2011
    4 1s22s22p2 1D2 0.97 1.999
    5 1s22s22p2 1S0 0.94+0.05 2p4(${}_0^1{\text{S}}$)1S 1.438
    6 1s22s2p3 5S2 1 1.225 7.944 1.155
    7 1s22s2p3 3D3 0.99 8.71–1 8.70–1 8.70–1
    8 1s22s2p3 3D2 0.99 8.60–1 8.61–1 8.59–1 1.08
    9 1s22s2p3 3D1 0.99 8.53–1 8.55–1 8.52–1
    10 1s22s2p3 3P2 0.99 3.22–1 3.20–1 3.15–1 3.80–1
    11 1s22s2p3 3P1 0.99 3.20–1 3.18–1 3.14–1
    12 1s22s2p3 3P0 0.99 3.19–1 3.18–1 3.13–1
    13 1s22s2p3 1D2 0.98 1.03–1 1.05–1 1.04–1 1.44–1
    14 1s22s2p3 3S1 0.98 4.59–2 4.71–2 4.59–2 6.10–2
    15 1s22s2p3 1P1 0.98 6.09–2 6.20–2 6.01–2 8.90–2
    注: 表中a×10b表示为ab.
    下载: 导出CSV

    表 15  Sn XLV离子(Z = 10, 14, 32, 36, 50)1s22s22p2和1s22s2p3组态的混合系数和寿命

    Table 15.  Mixing coefficients and lifetimes of 1s22s22p2 and 1s22s2p3 configurations in Sn XLV ion with Z = 10, 14, 32, 36, 50.

    Lv. No. State LS-composition τl/ns τv/ns τ[17]/ns τ[20]/ns τ[41]/ns
    1 1s22s22p2 3P0 0.72+0.28 2s2 2p2(${}_0^1{\text{S}}$) 1S
    2 1s22s22p2 3P1 1
    3 1s22s22p2 1D2 0.61+0.38 2s22p2(${}_2^3{\text{P}}$) 3P
    4 1s22s2p3 $ {}^3{\text{P}}_{2}^{\text{a}} $
    (1s22s2p3 5S2)
    0.43+0.38 2s 2S 2p3(${}_3^4{\text{P}}$) 5S) p+0.38 22S 2p3(${}_3^2{\text{D}}$) 3D) 9.11–2 8.31–2
    5 1s22s2p3 3D1 0.39+0.24 2s 2S 2p3(${}_1^2{\text{P}}$) 1P) p+0.24 22S 2p3(${}_1^2{\text{P}}$) 3P) 2.08–3 2.07–3
    6 1s22s22p2 3P2 0.61+0.38 2s2 2p2(${}_2^1{\text{D}}$) 1D
    7 1s22s22p2 1S0 0.70+0.28 2s2 2p2(${}_2^3{\text{P}}$) 3P
    8 1s22s2p3 3D2 0.49+0.45 2s 2S 2p3(${}_3^4{\text{S}}$) 5S) p+0.45 22S 2p3(${}_3^2{\text{D}}$) 1D) 9.44–3 9.33–3
    9 1s22s2p3 3D3 1 1.01–2 1.00–2
    10 1s22s2p3 3P0 1 2.51–3 2.50–3
    11 1s22s2p3 3S1 0.40+0.39 2s 2S 2p3(${}_3^2{\text{D}}$) 3D) p+0.39 22S 2p3(${}_1^2{\text{P}}$) 3P) 1.37–3 1.37–3
    12 1s22s2p3 1D2 0.71+0.22 2s 2S 2p3(${}_3^2{\text{D}}$) 3D) p+0.22 22S 2p3(${}_3^4{\text{S}}$) 5S) 1.36–3 1.35–3
    13 1s22s2p3 3P1 0.48+0.31 2s 2S 2p3(${}_1^2{\text{P}}$) 1P) p+0.31 22S 2p3(${}_3^4{\text{S}}$) 3S) 1.56–3 1.56–3
    14 1s22s2p3 $ {}^3{\text{P}}_{2}^{\text{b}} $
    (1s22s2p3 3P2)
    0.51+0.21 2s 2S 2p3(${}_3^2{\text{D}}$) 1D) p+0.21 22S 2p3(${}_3^2{\text{D}}$) 3D) 2.52–3 2.51–3
    15 1s22s2p3 1P1 0.43+0.27 2s 2S 2p3(${}_3^4{\text{S}}$) 3S) p+0.27 22S 2p3(${}_3^2{\text{D}}$) 3D) 9.42–4 9.40–4
    注: 表中a×10b表示为ab.
    下载: 导出CSV

    表 12  Si IX离子(Z = 10, 14, 32, 36, 50)1s22s22p2和1s22s2p3组态的混合系数和寿命

    Table 12.  Mixing coefficients and lifetimes of 1s22s22p2 and 1s22s2p3 configurations in Si IX ion with Z = 10, 14, 32, 36, 50.

    Lv. No.StateLS-compositionτl/nsτv/nsτ[17]/nsτ[20]/nsτ[41]/ns
    11s22s22p2 3P00.98
    21s22s22p2 3P10.98
    31s22s22p2 3P20.98
    41s22s22p2 1D20.98
    51s22s22p2 1S00.95 + 0.05 2p4(${}_0^1{\text{S}}$)1S
    61s22s2p3 5S214.7733.653
    71s22s2p3 3D30.994.42–14.43–1
    81s22s2p3 3D20.994.23–14.26–1
    91s22s2p3 3D10.994.12–14.15–1
    101s22s2p3 3P10.991.66–11.66–1
    111s22s2p3 3P011.65–11.64–1
    121s22s2p3 3P20.991.70–11.69–1
    131s22s2p3 1D20.995.59–25.66–2
    141s22s2p3 3S10.992.71–22.75–2
    151s22s2p3 1P10.993.48–23.51–2
    注: 表中a×10b表示为ab.
    下载: 导出CSV

    表 13  Ge XXVII离子(Z = 10, 14, 32, 36, 50)1s22s22p2和1s22s2p3组态的混合系数和寿命

    Table 13.  Mixing coefficients and lifetimes of 1s22s22p2 and 1s22s2p3 configurations in Ge XXVII ion with Z = 10, 14, 32, 36, 50.

    Lv. No.StateLS-compositionτl/nsτv/nsτ[17]/nsτ[20]/nsτ[41]/ns
    11s22s22p2 3P00.82 + 0.17 2s2 2p2(${}_0^1{\text{S}}$) 1S
    21s22s22p2 3P10.99
    31s22s22p2 3P20.56 + 0.43 2s2 2p2(${}_2^1{\text{D}}$) 1D
    41s22s22p2 1D20.56 + 0.43 2s2 2p2(${}_2^3{\text{P}}$) 3P
    51s22s22p2 1S00.80 + 0.17 2s2 2p2(${}_2^3{\text{P}}$) 3P+0.03 2p4(${}_0^1{\text{S}}$) 1S
    61s22s2p3 5S20.86 + 0.12 2s 2S 2p3(${}_1^2{\text{P}}$) 3P)1.671.56
    71s22s2p3 3D10.68 + 0.22 2s 2S 2p3(${}_1^2{\text{P}}$) 3P) p + 0.222S 2p3(${}_1^2{\text{P}}$) 1P)3.03–23.03–2
    81s22s2p3 3D20.70 + 0.20 2s 2S 2p3(${}_1^2{\text{P}}$) 3P) p + 0.202S 2p3(${}_3^4{\text{S}}$) 5S)6.20–26.14–2
    91s22s2p3 3D318.34–28.24–2
    101s22s2p3 3P012.39–22.39–2
    111s22s2p3 3P10.63 + 0.24 2s 2S 2p3(${}_3^2{\text{D}}$) 3D) p + 0.242S 2p3(${}_3^4{\text{S}}$) 3S)1.91–21.91–2
    121s22s2p3 3P20.43 + 0.28 2s 2S 2p3(${}_3^2{\text{D}}$) 3D) p + 0.s 2S 2p3(${}_3^2{\text{D}}$) 3D)1.91–21.91–2
    131s22s2p3 3S10.60 + 0.26 2s 2S 2p3(${}_1^2{\text{P}}$) 1P) p + 0.262S 2p3(${}_1^2{\text{P}}$) 3P)6.95–36.95–3
    141s22s2p3 1D20.70 + 0.25 2s 2S 2p3(${}_1^2{\text{P}}$) 3P) p + 0.252S 2p3(${}_3^2{\text{D}}$) 3D)1.26–21.26–2
    151s22s2p3 1P10.66 + 0.25 2s 2S 2p3(${}_3^4{\text{S}}$) 3S) p + 0.252S 2p3(${}_3^2{\text{D}}$) 3D)6.61–36.61–3
    注: 表中a×10b表示为ab.
    下载: 导出CSV

    表 14  Kr XXXI离子(Z = 10, 14, 32, 36, 50)1s22s22p2和1s22s2p3组态的混合系数和寿命

    Table 14.  Mixing coefficients and lifetimes of 1s22s22p2 and 1s22s2p3 configurations in Kr XXXI ion with Z = 10, 14, 32, 36, 50.

    Lv. No.StateLS-compositionτl/nsτv/nsτ[17]/nsτ[20]/nsτ[41]/ns
    11s22s22p2 3P00.79 + 0.20 2s2 2p2(${}_0^1{\text{S}}$) 1S
    21s22s22p2 3P10.991.1443
    31s22s22p2 1D20.51 + 0.49 2s2 2p2(${}_2^3{\text{P}}$) 3P2.4135
    41s22s22p2 3P20.50 + 0.49 2s2 2p2(${}_2^1{\text{D}}$) 1D4.9962
    51s22s22p2 1S00.77 + 0.21 2s22p2(${}_2^3{\text{P}}$) 3P+0.02 2p4(${}_0^1{\text{S}}$) 1S2.3002
    61s22s2p3 5S20.73 + 0.21 2s 2S2p3(${}_1^2{\text{P}}$) 3P) 3 +
    0.212S 2p3(${}_3^2{\text{D}}$) 3D)
    5.57–15.24–15.797–1
    71s22s2p3 3D10.58 + 0.24 2s 2S 2p3(${}_1^2{\text{P}}$) 3P) p +
    0.242S 2p3(${}_1^2{\text{P}}$) 1P)
    1.60–21.60–21.569–2
    81s22s2p3 3D20.63 + 0.19 2s 2S 2p3(${}_3^4{\text{S}}$) 5S) p +
    0.192S 2p3(${}_1^2{\text{P}}$) 3P)
    4.40–24.36–24.246–2
    91s22s2p3 3D315.64–25.56–25.481–2
    101s22s2p3 3P011.51–21.51–21.461–2
    111s22s2p3 3P10.51 + 0.30 2s 2S 2p3(${}_3^2{\text{D}}$) 3D) p +
    0.302S 2p3(${}_3^4{\text{S}}$) 3S)
    1.07–21.07–21.048–2
    121s22s2p3 ${}^1{\text{D}}_{2}^{\text{a}}$
    (1s22s2p3 3P2)
    0.46 + 0.25 2s 2S 2p3(${}_3^2{\text{D}}$) 3D) p +
    0.252S 2p3(${}_1^2{\text{P}}$) 3P)
    9.95–39.94–39.784–3
    131s22s2p3 3S10.48 + 0.29 2s 2S 2p3(${}_1^2{\text{P}}$) 1P) p +
    0.292S 2p3(${}_1^2{\text{P}}$) 3P)
    5.31–35.30–35.100–3
    141s22s2p3 ${}^1{\text{D}}_{2}^{\text{b}}$
    (1s22s2p3 1D2)
    0.51 + 0.38 2s 2S 2p3(${}_1^2{\text{P}}$) 3P) p +
    0.382S 2p3(${}_3^2{\text{D}}$) 3D)
    1.01–21.00–29.607–3
    151s22s2p3 1P10.58 + 0.28 2s 2S 2p3(${}_3^4{\text{S}}$) 3S) p +
    0.282S 2p3(${}_3^2{\text{D}}$) 3D)
    4.52–34.52–34.369–3
    注: 表中a×10b表示为ab.
    下载: 导出CSV

    表 16  Ne V离子(Z = 10, 14, 32, 36, 50)1s22s2p3-1s22s22p2间E1跃迁谱线波长、跃迁速率、加权振子强度

    Table 16.  The E1 transition wavelength, rate, weighted oscillator strength, and line strength between the 1s22s2p3 and 1s22s22p2 configurations in Ne V ions with Z = 10, 14, 32, 36, 50.

    Transition A—B λ AC/s–1 AB/s–1 gfC gfB SC/a.u. SB/a.u. AC/AB
    D13P0 568.53 6.7218 6.7298 9.770–2 9.782–2 1.829–1 1.831–1 1.00
    6.6208[22] 6.6158[22]
    568.424[40] 7.708[40] 2.10–1[40]
    3P13P0 480.40 1.0329 1.0299 1.072–1 1.068–1 1.695–1 1.689–1 1.00
    1.0279[22] 1.0319[22]
    480.415[40] 1.399[40] 2.10–1[40]
    3S13P0 357.68 2.3479 2.4109 1.351–1 1.387–1 1.590–1 1.633–1 0.97
    2.3789[22] 2.3859[22]
    357.947[40] 2.509[40] 1.70–1[40]
    1P13P0 328.67 8.7564 8.5104 4.254–6 4.135–6 4.603–6 4.474–6 1.03
    9.0874[22] 8.4884[22]

    3D11S0
    898.04 1.7794 1.6794 6.452–6 6.090–6 1.908–5 1.801–5 1.06
    1.7584[22] 1.7304[22]
    3P11S0 696.29 1.0835 9.2444 2.361–5 2.016–5 5.411–5 4.620–5 1.17
    1.1145[22] 9.4744[22]
    3S11S0 465.04 4.0825 4.1365 3.971–5 4.023–5 6.079–5 6.159–5 0.99
    3.9415[22] 3.9085[22]
    1P11S0 417.16 3.0809 3.1369 2.411–1 2.455–1 3.311–1 3.371–1 0.98
    416.834[40] 3.0719[22] 3.0649[22]
    3P03P1 481.28 3.1449 3.1349 1.092–1 1.088–1 1.730–1 1.725–1 1.00
    3.1249[22] 3.1409[22]
    481.293[40] 4.009[40] 2.20–1[40]
    3D13P1 569.86 4.7008 4.7118 6.864–2 6.881–2 1.288–1 1.291–1 1.00
    4.6298[22] 4.6308[22]
    569.756[40] 5.808[40] 1.60–1[40]
    3P13P1 481.36 8.2898 8.2648 8.638–2 8.612–2 1.369–1 1.365–1 1.00
    8.2388[22] 8.2758[22]
    481.366[40] 1.009[40] 1.70–1[40]
    3S13P1 358.21 7.0479 7.2359 4.067–1 4.175–1 4.796–1 4.924–1 0.97
    7.1429[22] 7.1599[22]
    358.474[40] 7.309[40] 5.00–1[40]
    1P13P1 329.12 4.7316 4.9086 2.305–4 2.391–4 2.497–4 2.591–4 0.96
    4.7936[22] 4.8516[22]
    5S23P1 1141.94 3.5183 2.3293 3.439–6 2.277–6 1.293–5 8.558–6 1.51
    3.4853[22] 2.3403[22]
    1136.515[40]
    3D23P1 569.94 9.0008 9.0028 2.191–1 2.192–1 4.112–1 4.113–1 1.00
    8.8668[22] 8.8508[22]
    569.828[40] 1.009[40] 4.60–1[40]
    3P23P1 481.37 7.4148 7.3798 1.288–1 1.282–1 2.041–1 2.031–1 1.00
    7.3738[22] 7.3978[22]
    481.371[40] 1.009[40] 2.80–1[40]
    1D23P1 369.72 1.1735 1.2745 1.202–5 1.306–5 1.463–5 1.589–5 0.92
    1.1595[22] 1.2735[22]
    3D13P2 572.15 2.7367 2.7507 4.029–3 4.049–3 7.589–3 7.626–3 1.00
    2.6947[22] 2.7007[22]
    3P13P2 482.98 1.2739 1.2709 1.336–1 1.332–1 2.124–1 2.118–1 1.00
    1.2659[22] 1.2729[22]
    482.990[40] 1.709[40] 2.80–1[40]
    3S13P2 359.11 1.18010 1.21110 6.842–1 7.021–1 8.089–1 8.301–1 0.97
    1.19610[22] 1.19810[22]
    359.374[40] 1.2010[40] 8.25–1[40]
    1P13P2 329.88 5.0775 5.5065 2.485–5 2.695–5 2.699–5 2.927–5 0.92
    1.2659[22] 1.2729[22]
    3D11D2 687.30 3.1894 2.3384 6.776–6 4.966–6 1.533–5 1.124–5 1.36
    3.3774[22] 2.3984[22]
    3P11D2 562.55 2.9235 2.7955 4.161–5 3.979–5 7.706–5 7.368–5 1.05
    2.8875[22] 2.7895[22]
    3S11D2 401.32 6.6595 6.5885 4.823–5 4.772–5 6.372–5 6.304–5 1.01
    6.7655[22] 6.8915[22]
    1P11D2 365.15 1.30310 1.32610 7.815–1 7.951–1 9.394–1 9.558–1 0.98
    1.32010[22] 1.33010[22]
    365.593[40] 1.3510[40] 9.77–1[40]
    5S23P2 1151.14 9.0753 5.8393 9.014–6 5.800–6 3.416–5 2.198–5 1.55
    1145.606[40] 9.2073[22] 5.8773[22]
    3D23P2 572.22 2.6138 2.6208 6.413–2 6.431–2 1.208–1 1.212–1 1.00
    2.5738[22] 2.5748[22]
    572.105[40] 3.508[40] 1.60–1[40]
    3P23P2 482.99 2.3769 2.3689 4.155–1 4.140–1 6.607–1 6.584–1 1.00
    2.3619[22] 2.3729[22]
    482.994[40] 3.009[40] 8.30–1[40]
    1D23P2 370.68 2.6736 2.8156 2.753–4 2.899–4 3.360–4 3.538–4 0.95
    2.7336[22] 2.7336[22]
    5S21D2 1736.53 6.487–1 3.006–1 1.466–9 6.796–10 8.383–9 3.885–9 2.16
    9.084–1[22] 3.080–1[22]
    3D21D2 687.41 5.1194 4.6994 1.813–5 1.664–5 4.103–5 3.766–5 1.09
    5.0484[22] 4.5634[22]
    3P21D2 562.56 4.7204 4.8524 1.120–5 1.151–5 2.074–5 2.132–5 0.97
    4.2144[22] 4.8644[22]
    1D21D2 415.82 9.4719 9.6719 1.228 1.253 1.680 1.716 0.98
    9.5079[22] 9.5239[22]
    416.212[40] 1.1010[40] 1.96[40]
    3D33P2 572.45 1.1489 1.1489 3.949–1 3.946–1 7.442–1 7.437–1 1.00
    1.1319[22] 1.1289[22]
    572.335[40] 1.409[40] 9.10–1[40]
    3D31D2 687.75 2.4225 2.2425 1.202–4 1.113–4 2.722–4 2.520–4 1.08
    2.3925[22] 2.1825[22]
    注: 表中A, B分别为1s22s2p3和1s22s22p2组态; a×10b表示为ab.
    下载: 导出CSV

    表 20  Sn XLV离子(Z = 10, 14, 32, 36, 50)1s22s2p3-1s22s22p2间E1跃迁谱线波长、跃迁速率、加权振子强度

    Table 20.  The E1 transition wavelength, rate, weighted oscillator strength, and line strength between the 1s22s2p3 and 1s22s22p2 configurations in Sn XLV ions with Z = 10, 14, 32, 36, 50.

    Transition A—B λ AC/s–1 AB/s–1 gfC gfB SC/a.u. SB/a.u. AC/AB
    3D13P0 27.21 4.58911 4.57211 1.529–1 1.523–1 1.370–2 1.364–2 1.00
    3S13P0 17.74 1.64610 1.64810 2.329–3 2.332–3 1.360–4 1.362–4 1.00
    3P13P0 17.39 8.0239 8.0429 1.091–3 1.093–3 6.243–5 6.258–5 1.00
    1P13P0 12.74 1.5027 1.5207 1.096–6 1.109–6 4.595–8 4.650–8 0.99
    3D11S0 166.91 6.3747 7.3987 2.662–4 3.090–4 1.463–4 1.698–4 0.86
    3S11S0 73.29 9.9528 8.8788 2.404–3 2.145–3 5.802–4 5.175–4 1.12
    3P11S0 67.66 9.0119 8.2659 1.855–2 1.702–2 4.133–3 3.790–3 1.09
    1P11S0 27.95 2.27711 2.26211 7.999–2 7.945–2 7.360–3 7.310–3 1.01
    3P03P1 27.42 3.99211 3.98411 4.499–2 4.490–2 4.061–3 4.053–3 1.00
    3D13P1 55.90 3.9669 3.7039 5.574–3 5.204–3 1.026–3 9.578–4 1.07
    3S13P1 26.65 6.92211 6.90211 2.211–1 2.205–1 1.940–2 1.934–2 1.00
    3P13P1 25.87 1.94310 1.92810 5.845–3 5.801–3 4.978–4 4.940–4 1.01
    1P13P1 16.76 2.73810 2.74610 3.460–3 3.469–3 1.909–4 1.914–4 1.00
    5S23P1 74.89 7.6479 7.0119 3.215–2 2.948–2 7.927–3 7.268–3 1.09
    3D23P1 32.03 1.03411 1.02311 7.951–2 7.864–2 8.383–3 8.291–3 1.01
    1D23P1 26.08 3.70610 3.70910 1.890–2 1.891–2 1.623–3 1.624–3 1.00
    3P23P1 18.02 2.7659 2.7719 6.731–4 6.747–4 3.993–5 4.003–5 1.00
    3D11D2 59.86 1.90710 1.78610 3.074–2 2.878–2 6.059–3 5.673–3 1.07
    3S11D2 27.52 1.06910 1.05510 3.641–3 3.593–3 3.298–4 3.255–4 1.01
    3P11D2 26.68 5.99911 5.98211 1.921–1 1.916–1 1.688–2 1.683–2 1.00
    1P11D2 17.10 4.1919 4.2079 5.513–4 5.534–4 3.104–5 3.115–5 1.00
    3D13P2 328.18 3.2766 4.3876 2.645–4 3.542–4 2.858–4 3.826–4 0.75
    3S13P2 60.28 7.7769 7.1419 1.271–2 1.167–2 2.522–3 2.316–3 1.09
    3P13P2 56.42 4.0529 3.8089 5.801–3 5.452–3 1.077–3 1.013–3 1.06
    1P13P2 25.82 8.04511 8.03211 2.413–1 2.409–1 2.051–2 2.048–2 1.00
    5S21D2 82.19 4.3289 3.9079 2.191–2 1.978–2 5.929–3 5.352–3 1.11
    3D21D2 33.29 2.9829 2.9209 2.477–3 2.425–3 2.715–4 2.658–4 1.02
    1D21D2 26.91 6.88911 6.86611 3.740–1 3.728–1 3.314–2 3.303–2 1.00
    3P21D2 18.42 7.7389 7.7549 1.967–3 1.971–3 1.193–4 1.195–4 1.00
    5S23P2 131.86 4.7977 5.4727 6.252–4 7.133–4 2.714–4 3.096–4 0.88
    3D23P2 97.19 7.2928 6.2768 5.163–3 4.443–3 1.652–3 1.422–3 1.16
    1D23P2 57.45 1.10210 1.02410 2.725–2 2.534–2 5.155–3 4.793–3 1.08
    3P23P2 28.94 3.87511 3.85011 2.433–1 2.418–1 2.318–2 2.303–2 1.01
    3D31D2 30.66 9.15210 9.06810 9.028–2 8.946–2 9.113–3 9.030–3 1.01
    3D33P2 77.74 8.1689 7.3709 5.180–2 4.674–2 1.326–2 1.196–2 1.11
    注: 表中A, B分别为1s22s2p3和1s22s22p2组态; a×10b表示为ab.
    下载: 导出CSV

    表 17  Si IX离子(Z = 10, 14, 32, 36, 50)1s22s2p3-1s22s22p2间E1跃迁谱线波长、跃迁速率、加权振子强度

    Table 17.  The E1 transition wavelength, rate, weighted oscillator strength, and line strength between the 1s22s2p3 and 1s22s22p2 configurations in Si IX ions with Z = 10, 14, 32, 36, 50.

    Transition A—B λ AC/s–1 AB/s–1 gfC gfB SC/a.u. SB/a.u. AC/AB
    3D13P0 342.19 1.4939 1.5029 7.861–2 7.910–2 8.855–2 8.911–2 0.99
    1.4949[22] 1.4949[22]
    342.36[26] 1.4689[26] 8.724–2[26]
    341.949[40] 1.499[40] 8.81–2[40]
    3P13P0 290.83 1.9169 1.9079 7.29–2 7.255–2 6.980–2 6.947–2 1.00
    1.9179[22] 1.9199[22] 6.35–2[27]
    290.93[26] 1.8859[26] 6.27–2[28] 6.871–2[26]
    290.69[40] 1.949[40] 7.37–2[31] 7.05–2[40]
    3S13P0 223.74 3.9759 4.0379 8.950–2 9.089–2 6.592–2 6.695–2 0.98
    4.0089[22] 4.0159[22] 1.22–1[27]
    223.93[26] 3.9549[26] 1.23–1[28] 6.574–2[26]
    223.743[40] 4.049[40] 9.12–2[31] 6.70–2[40]
    1P13P0 202.88 4.4955 4.1145 8.320–6 7.616–6 5.557–6 5.086–6 1.09
    4.3005[22] 3.9415[22]
    203.22[26] 4.4775[26] 5.563–6[26]
    202.941[40] 3.525[40] 4.36–6[40]
    3D11S0 543.82 4.0795 3.9575 5.426–5 5.263–5 9.714–5 9.423–5 1.03
    4.0795[22] 4.0295[22]
    542.99[26] 3.9445[26] 9.349–5[26]
    541.589[40] 3.645[40] 8.56–5[40]
    3P11S0 424.65 2.1906 1.9776 1.776–4 1.603–4 2.483–4 2.242–4 1.11
    2.2166[22] 2.0056[22]
    424.08[26] 1.9706[26] 2.225–4[26]
    423.352[40] 1.876[40] 2.10–4[40]
    3S11S0 295.34 5.9576 6.0536 2.337–4 2.375–4 2.272–4 2.309–4 0.98
    5.8746[22] 5.8286[22]
    295.3[26] 6.0306[26] 2.299–4[26]
    294.861[40] 5.156[40] 1.95–4[40]
    1P11S0 260.04 5.8019 5.8899 1.764–1 1.791–1 1.510–1 1.533–1 0.99
    5.8399[22] 5.8299[22] 2.96–1[27]
    260.31[26] 5.7229[26] 2.92–1[28] 1.494–1[26]
    259.770[40] 5.809[40] 1.79–1[31] 1.51–1[40]
    3P03P1 292.89 6.0699 6.0549 7.804–2 7.785–2 7.525–2 7.506–2 1.00
    6.0649[22] 6.0839[22] 7.01–2[27]
    292.99[26] 1.1969[26] 6.89–2[28] 7.422–2[26]
    292.800[40] 6.079[40] 7.90–2[31] 7.53–2[40]
    3D13P1 345.11 8.7448 8.8308 4.684–2 4.730–2 5.321–2 5.374–2 0.99
    8.7448[22] 8.7668[22]
    345.37[26] 8.6068[26] 5.249–2[26]
    344.951[40] 8.778[40] 5.33–2[40]
    3P13P1 292.94 1.8359 1.8329 7.084–2 7.069–2 6.831–2 6.817–2 1.00
    1.8349[22] 1.8389[22] 6.71–2[27]
    293.1[26] 1.8069[26] 6.51–2[28] 6.733–2[26]
    292.857[40] 1.849[40] 7.16–2[31] 6.85–2[40]
    3S13P1 224.98 1.19410 1.21210 2.719–1 2.760–1 2.014–1 2.044–1 0.99
    1.20410[22] 1.20610[22] 3.70–1[27]
    225.21[26] 1.18710[26] 3.72–1[28] 2.008–1[26]
    225.024[40] 1.2110[40] 2.77–1[31] 2.05–1[40]
    1P13P1 203.90 7.2337 7.3967 1.352–3 1.383–3 9.078–4 9.284–4 0.98
    7.2367[22] 7.2987[22]
    204.27[26] 7.3717[26] 9.302–4[26]
    203.994[40] 6.707[40] 8.43–4[40]
    5S23P1 678.56 7.9144 6.1994 2.731–5 2.139–5 6.102–5 4.779–5 1.28
    8.0524[22] 6.3304[22]
    673.72[26] 6.4814[26] 4.891–5[26]
    674.65[40] 6.194[40] 4.69–5[40]
    3D23P1 345.28 1.9509 1.9599 1.743–1 1.751–1 1.981–1 1.990–1 1.00
    1.9519[22] 1.9479[22]
    345.5[26] 1.9149[26] 1.948–1[26]
    345.124[40] 1.949[40] 1.97–1[40]
    3P23P1 292.85 1.2199 1.2109 7.834–2 7.778–2 7.553–2 7.499–2 1.01
    1.2199[22] 1.2199[22] 6.47–2[27]
    293.04[26] 5.9749[26] 6.46–2[28] 7.420–2[26]
    292.763[40] 1.239[40] 7.91–2[31] 7.64–2[40]
    1D23P1 228.30 2.8346 2.9586 1.107–4 1.156–4 8.323–5 8.685–5 0.96
    2.8206[22] 2.9646[22]
    228.73[26] 2.9476[26] 8.703–5[26]
    228.385[40] 2.886[40] 8.48–5[40]
    3D13P2 349.82 3.5887 3.6547 1.9745–3 2.011–3 2.274–3 2.316–3 0.98
    3.6257[22] 3.6447[22]
    350.05[26] 3.5717[26] 2.268–3[26]
    349.617[40] 3.697[40] 2.34–3[40]
    3P13P2 296.32 2.2619 2.2569 8.930–2 8.909–2 8.712–2 8.691–2 1.00
    2.2599[22] 2.2699[22] 7.90–2[27]
    296.46[26] 2.2279[26] 7.80–2[28] 8.592–2[26]
    296.213[40] 2.289[40] 9.04–2[31] 8.79–2[40]
    3S13P2 226.98 2.04010 2.06810 4.726–1 4.792–1 3.532–1 3.581–1 0.99
    2.05710[22] 2.05810[22]
    227.19[26] 2.02610[26] 3.517–1[26]
    227.000[40] 2.0710[40] 3.58–1[40]
    1P13P2 205.53 2.5766 2.8666 4.895–5 5.446–5 3.312–5 3.685–5 0.90
    2.5606[22] 2.6456[22]
    205.9[26] 2.9486[26] 3.811–5[26]
    205.617[40] 2.066[40] 2.66–5[40]
    3D11D2 417.97 8.6325 7.1145 6.782–5 5.590–5 9.332–5 7.692–5 1.21
    8.6765[22] 7.1575[22]
    417.85[26] 7.1235[26] 7.694–5[26]
    417.510[40] 7.115[40] 7.66–5[40]
    3P11D2 343.81 6.2936 6.1236 3.346–4 3.255–4 3.787–4 3.684–4 1.03
    6.2116[22] 6.1076[22]
    343.7[26] 6.1146[26] 3.675–4[26]
    343.545[40] 5.766[40] 3.46–4[40]
    3S11D2 253.83 3.7936 3.6476 1.099–4 1.057–4 9.186–5 8.832–5 1.04
    3.7346[22] 3.7956[22]
    253.94[26] 3.9866[26] 9.664–5[26]
    253.797[40] 3.306[40] 8.00–5[40]
    1P11D2 227.31 2.26010 2.27310 5.251–1 5.281–1 3.930–1 3.952–1 0.99
    2.27610[22] 2.28410[22] 4.78–1[27]
    227.63[26] 2.23510[26] 4.83–1[28] 3.902–1[26]
    227.361[40] 2.3110[40] 5.36–1[31] 4.02–1[40]
    5S23P2 697.02 1.9435 1.4735 7.077–5 5.363–5 1.624–4 1.231–4 1.32
    1.9155[22] 1.4665[22]
    691.75[26] 1.5055[26] 1.229–4[26]
    692.73[40] 1.435[40] 1.18–4[40]
    3D23P2 350.00 3.9498 3.9998 3.626–2 3.672–2 4.178–2 4.231–2 0.99
    3.9618[22] 3.9728[22]
    350.18[26] 3.8958[26] 4.128–2[26]
    349.795[40] 4.008[40] 4.23–2[40]
    3P23P2 296.23 4.6859 4.6699 3.082–1 3.071–1 3.005–1 2.995–1 1.00
    4.6829[22] 4.6919[22] 2.83–1[27]
    296.35[26] 4.6089[26] 2.76–1[28] 2.959–1[26]
    296.117[40] 4.719[40] 3.12–1[31] 3.02–1[40]
    1D23P2 230.35 5.8127 6.0027 2.312–3 2.388–3 1.753–3 1.811–3 0.97
    5.8077[22] 5.9117[22]
    230.78[26] 5.8747[26] 1.782–3[26]
    230.421[40] 5.467[40] 1.65–3[40]
    5S21D2 1032.47 2.5842 1.3382 2.065–7 1.069–7 7.018–7 3.633–7 1.93
    1.6812[22] 1.0802[22]
    1018.31[26] 1.1972[26] 3.120–7[26]
    3D21D2 418.22 1.1186 1.0746 1.466–4 1.408–4 2.019–4 1.939–4 1.04
    1.1246[22] 1.0596[22]
    418.05[26] 1.0526[26] 1.897–4[26]
    417.763[40] 9.825[40] 1.77–4[40]
    3P21D2 343.69 9.5375 9.6695 8.445–5 8.561–5 9.555–5 9.686–5 0.99
    9.0185[22] 9.8575[22]
    343.55[26] 9.6775[26] 9.683–5[26]
    343.416[40] 8.275[40] 8.26–5[40]
    1D21D2 258.06 1.75910 1.78110 8.781–1 8.891–1 7.460–1 7.554–1 0.99
    1.77010[22] 1.77010[22] 1.21[27]
    258.42[26] 1.73810[26] 1.20[28] 7.403–1[26]
    258.08[40] 1.7710[40] 8.93–1[31] 7.52–1[40]
    3D33P2 350.07 2.2479 2.2559 2.890–1 2.900–1 3.331–1 3.342–1 1
    2.2509[22] 2.2419[22]
    350.25[26] 2.2019[26] 3.268–1[26]
    349.873[40] 2.249[40] 3.31–1[40]
    3D31D2 418.33 5.8086 5.5756 1.067–3 1.024–3 1.469–3 1.410–3 1.04
    5.7996[22] 5.4926[22]
    418.15[26] 5.4836[26] 1.385–3[26]
    417.875[40] 5.196[40] 1.31–3[40]
    注: 表中A, B分别为1s22s2p3和1s22s22p2组态; a×10b表示为ab.
    下载: 导出CSV

    表 18  Ge XXVII 离子(Z = 10, 14, 32, 36, 50)1s22s2p3-1s22s22p2间E1跃迁谱线波长、跃迁速率、加权振子强度

    Table 18.  The E1 transition wavelength, rate, weighted oscillator strength, and line strength between the 1s22s2p3 and 1s22s22p2 configurations in Ge XXVII ions with Z = 10, 14, 32, 36, 50.

    Transition A—B λ AC/s–1 AB/s–1 gfC gfB SC/a.u. SB/a.u. AC/AB
    3D13P0 85.09 3.14510 3.14810 1.024–1 1.025–1 2.869–2 2.872–2
    1.00
    85.07[26] 3.14310[26] 2.865–2[26]
    3P13P0 68.08 5.2709 5.2559 1.099–2 1.095–2 2.462–3 2.455–3 1.00
    68.07[26] 5.2609[26] 2.456–3[26]
    3S13P0 61.19 1.12210 1.12910 1.890–2 1.902–2 3.806–3 3.831–3 0.99
    61.18[26] 1.12510[26] 3.813–3[26]
    1P13P0 50.62 4.6717 4.6197 5.384–5 5.324–5 8.973–6 8.873–6 1.01
    50.62[26] 4.6367[26] 8.902–6[26]
    3D11S0 224.22 5.6477 5.2747 1.277–3 1.193–3 9.424–4 8.803–4 1.07
    223.88[26] 5.3297[26] 8.854–4[26]
    3P11S0 135.21 4.1148 3.8488 3.383–3 3.164–3 1.506–3 1.408–3 1.07
    135.08[26] 3.8518[26] 1.405–3[26]
    3S11S0 110.49 1.9019 1.8589 1.044–2 1.020–2 3.796–3 3.710–3 1.02
    110.41[26] 1.8509[26] 3.688–3[26]
    1P11S0 80.25 2.85210 2.84910 8.260–2 8.253–2 2.182–2 2.180–2 1.00
    80.21[26] 2.83910[26] 2.169–2[26]
    3P03P1 81.91 4.17310 4.17310 4.198–2 4.198–2 1.132–2 1.132–2 1.00
    81.89[26] 4.17410[26] 1.131–2[26]
    3D13P1 104.69 2.6217 3.1337 1.292–4 1.544–4 4.452–5 5.322–5 0.84
    104.66[26] 3.0567[26] 5.188–5[26]
    3P13P1 80.08 4.48610 4.49110 1.294–1 1.295–1 3.411–2 3.414–2 1.00
    80.06[26] 4.48510[26] 3.408–2[26]
    3S13P1 70.71 2.94110 2.94510 6.613–2 6.621–2 1.539–2 1.541–2 1.00
    70.70[26] 2.93510[26] 1.535–2[26]
    1P13P1 56.97 1.05410 1.06010 1.539–2 1.547–2 2.886–3 2.902–3 0.99
    56.96[26] 1.05810[26] 2.895–3[26]
    5S23P1 161.20 4.0058 3.7728 7.802–3 7.348–3 4.1405–3 3.900–3 1.06
    161.01[26] 3.7928[26] 3.906–3[26]
    3D23P1 100.79 1.58010 1.56710 1.203–1 1.193–1 3.991–2 3.958–2 1.01
    100.75[26] 1.56410[26] 3.948–2[26]
    3P23P1 77.17 9.9147 1.0708 4.425–4 4.774–4 1.124–4 1.213–4 0.93
    77.15[26] 1.0548[26] 1.194–4[26]
    1D23P1 64.62 1.1549 1.1599 3.611–3 3.629–3 7.683–4 7.721–4 0.99
    64.62[26] 1.1639[26] 7.741–4[26]
    3D13P2 112.72 1.1049 1.0599 6.310–3 6.050–3 2.341–3 2.245–3 1.04
    112.68[26] 1.0589[26] 2.241–3[26]
    3P13P2 84.69 1.5779 1.5939 5.087–3 5.140–3 1.418–3 1.433–3 0.99
    84.67[26] 1.5999[26] 1.437–3[26]
    3S13P2 74.28 9.93410 9.91910 2.465–1 2.462–1 6.029–2 6.020–2 1.00
    74.27[26] 9.90510[26] 6.007–2[26]
    1P13P2 59.27 1.1069 1.0959 1.748–3 1.730–3 3.410–4 3.376–4 1.01
    59.26[26] 1.1049[26] 3.403–4[26]
    3D11D2 163.29 3.2148 2.9908 3.855–3 3.586–3 2.072–3 1.928–3 1.07
    163.19[26] 3.0108[26] 1.937–3[26]
    3P11D2 110.38 8.6246 1.1257 4.726–5 6.167–5 1.717–5 2.241–5 0.77
    110.33[26] 1.1687[26] 2.322–5[26]
    3S11D2 93.33 1.9719 1.9409 7.721–3 7.599–3 2.372–3 2.335–3 1.02
    93.30[26] 1.9219[26] 2.310–3[26]
    1P11D2 70.80 1.10911 1.11011 2.501–1 2.503–1 5.829–2 5.835–2 1.00
    70.78[26] 1.10911[26] 5.826–2[26]
    5S23P2 181.07 2.3298 2.1398 5.723–3 5.258–3 3.412–3 3.134–3 1.09
    180.81[26] 2.1538[26] 3.140–3[26]
    3D23P2 108.21 4.0698 3.8918 3.572–3 3.416–3 1.273–3 1.217–3 1.05
    108.17[26] 3.9078[26] 1.220–3[26]
    3P23P2 81.45 5.19210 5.19510 2.582–1 2.583–1 6.922–2 6.927–2 1.00
    81.42[26] 5.19110[26] 6.915–2[26]
    1D23P2 67.60 1.42110 1.43010 4.866–2 4.898–2 1.083–2 1.090–2 0.99
    67.59[26] 1.42210[26] 1.083–2[26]
    5S21D2 360.39 6.5476 5.3496 6.374–4 5.207–4 7.563–4 6.178–4 1.22
    359.24[26] 5.4336[26] 6.215–4[26]
    3D21D2 154.01 6.5817 6.2307 1.170–3 1.108–3 5.933–4 5.616–4 1.06
    153.89[26] 6.1507[26] 5.531–4[26]
    3P21D2 104.93 7.7217 6.9777 6.372–4 5.758–4 2.201–4 1.989–4 1.11
    104.88[26] 6.9087[26] 1.967–4[26]
    1D21D2 83.02 6.36210 6.34010 3.287–1 3.275–1 8.982–2 8.951–2 1.00
    82.99[26] 6.32510[26] 8.923–2[26]
    3D33P2 99.36 9.4929 9.4419 9.833–2 9.781–2 3.216–2 3.199–2 1.01
    99.31[26] 9.4189[26] 3.187–2[26]
    3D31D2 136.67 2.6409 2.5459 5.174–2 4.988–2 2.328–2 2.244–2 1.04
    136.58[26] 2.5399[26] 2.235–2[26]
    注: 表中A, B分别为1s22s2p3和1s22s22p2组态; a×10b表示为ab.
    下载: 导出CSV

    表 19  Kr XXXI离子(Z = 10, 14, 32, 36, 50)1s22s2p3-1s22s22p2间E1跃迁谱线波长、跃迁速率、加权振子强度

    Table 19.  The E1 transition wavelength, rate, weighted oscillator strength, and line strength between the 1s22s2p3 and 1s22s22p2 configurations in Kr XXXI ions with Z = 10, 14, 32, 36, 50.

    Transition A—B λ AC/s–1 AB/s–1 gfC gfB SC/a.u. SB/a.u. AC/AB
    3D13P0 65.33 5.90010 5.90010 1.133–1 1.133–1 2.436–2 2.436–2 1.00
    65.32[26] 5.89410[26] 2.432–2[26]
    3P13P0 50.00 6.4679 6.4599 7.270–3 7.261–3 1.197–3 1.195–3 1.00
    49.98[26] 6.4689[26] 1.196–3[26]
    3S13P0 46.48 1.13010 1.13610 1.098–2 1.103–2 1.680–3 1.688–3 0.99
    46.47[26] 1.13210[26] 1.681–3[26]
    1P13P0 37.16 4.2727 4.2627 2.653–5 2.646–5 3.245–6 3.237–6 1.00
    37.15[26] 4.2727[26] 3.244–6[26]
    3D11S0 248.44 3.2157 2.9087 8.925–4 8.073–4 7.300–4 6.603–4 1.11
    248.00[26] 2.9437[26] 6.646–4[26]
    3P11S0 114.67 6.3048 5.8788 3.728–3 3.476–3 1.407–3 1.312–3 1.07
    114.57[26] 5.8808[26] 1.309–3[26]
    3S11S0 97.70 3.0619 2.9609 1.314–2 1.271–2 4.227–3 4.087–3 1.03
    97.63[26] 2.9529[26] 4.067–3[26]
    1P11S0 63.97 4.19010 4.17810 7.712–2 7.691–2 1.624–2 1.620–2 1.00
    63.94[26] 4.16810[26] 1.614–2[26]
    3P03P1 64.20 6.62510 6.62510 4.094–2 4.094–2 8.654–3 8.653–3 1.00
    64.19[26] 6.62710[26] 8.650–3[26]
    3D13P1 88.22 1.6408 1.4828 5.741–4 5.187–4 1.667–4 1.506–4 1.11
    88.19[26] 1.4938[26] 1.516–4[26]
    3P13P1 62.38 8.55710 8.56010 1.498–1 1.498–1 3.075–2 3.076–2 1.00
    62.36[26] 8.55310[26] 3.072–2[26]
    3S13P1 56.99 3.10910 3.10710 4.542–2 4.539–2 8.522–3 8.517–3 1.00
    56.98[26] 3.10010[26] 8.494–3[26]
    1P13P1 43.59 1.40910 1.41510 1.204–2 1.209–2 1.727–3 1.735–3 1.00
    43.58[26] 1.41210[26] 1.731–3[26]
    5S23P1 128.51 1.2669 1.1999 1.567–2 1.483–2 6.629–3 6.276–3 1.06
    128.39[26] 1.2029[26] 6.280–3[26]
    3D23P1 79.57 2.20010 2.17910 1.044–1 1.034–1 2.735–2 2.709–2 1.01
    79.54[26] 2.17710[26] 2.703–2[26]
    3P23P1 59.98 1.4089 1.4359 3.795–3 3.870–3 7.494–4 7.641–4 0.98
    59.96[26] 1.4309[26] 7.607–4[26]
    1D23P1 49.16 1.5769 1.5819 2.856–3 2.865–3 4.622–4 4.637–4 1.00
    49.16[26] 1.5879[26] 4.650–4[26]
    3D13P2 95.08 3.2419 3.1119 1.318–2 1.265–2 4.125–3 3.960–3 1.04
    95.05[26] 3.1119[26] 3.955–3[26]
    3P13P2 65.73 7.9468 8.0868 1.544–3 1.571–3 3.342–4 3.401–4 0.98
    65.72[26] 8.1398[26] 3.420–4[26]
    3S13P2 59.78 1.40211 1.39911 2.254–1 2.250–1 4.437–2 4.423–2 1.00
    59.77[26] 1.39811[26] 4.421–2[26]
    1P13P2 45.20 1.6789 1.6729 1.542–3 1.537–3 2.295–4 2.287–4 1.00
    45.19[26] 1.6849[26] 2.302–4[26]
    3D11D2 168.03 2.2558 2.0738 2.863–3 2.632–3 1.584–3 1.456–3 1.09
    167.89[26] 2.0908[26] 1.465–3[26]
    3P11D2 93.92 2.2238 1.9978 8.821–4 7.921–4 2.728–4 2.449–4 1.11
    93.88[26] 1.9758[26] 2.419–4[26]
    3S11D2 82.23 3.1199 3.0439 9.483–3 9.254–3 2.567–3 2.505–3 1.02
    82.20[26] 3.0259[26] 2.487–3[26]
    1P11D2 56.95 1.63411 1.63511 2.384–1 2.385–1 4.469–2 4.473–2 1.00
    56.94[26] 1.63411[26] 4.466–2[26]
    5S23P2 143.62 6.3928 5.9288 9.884–3 9.166–3 4.673–3 4.334–3 1.08
    143.46[26] 5.9558[26] 4.339–3[26]
    3D23P2 85.11 8.3678 8.0968 4.544–3 4.396–3 1.273–3 1.232–3 1.03
    85.07[26] 8.1068[26] 1.232–3[26]
    3P23P2 63.07 9.77910 9.78010 2.916–1 2.916–1 6.055–2 6.056–2 1.00
    63.06[26] 9.77310[26] 6.047–2[26]
    1D23P2 51.23 1.28210 1.28810 2.522–2 2.534–2 4.253–3 4.274–3 1.00
    51.21[26] 1.28210[26] 4.249–3[26]
    5S21D2 417.15 5.0226 3.8886 6.550–4 5.072–4 8.996–4 6.966–4 1.29
    415.63[26] 3.9576[26] 7.011–4[26]
    3D21D2 139.21 1.2658 1.1698 1.838–3 1.699–3 8.422–4 7.785–4 1.08
    139.08[26] 1.1608[26] 7.705–4[26]
    3P21D2 88.58 1.3719 1.3089 8.066–3 7.691–3 2.352–3 2.243–3 1.05
    88.54[26] 1.3039[26] 2.232–3[26]
    1D21D2 66.86 8.53010 8.49010 2.859–1 2.845–1 6.293–2 6.263–2 1.00
    66.84[26] 8.47910[26] 6.249–2[26]
    3D33P2 76.60 1.42010 1.41110 8.740–2 8.686–2 2.204–2 2.190–2 1.01
    76.57[26] 1.40910[26] 2.184–2[26]
    3D31D2 117.79 3.7969 3.6279 5.527–2 5.280–2 2.143–2 2.048–2 1.05
    117.70[26] 3.6219[26] 2.040–2[26]
    注: 表中A, B分别为1s22s2p3和1s22s22p2组态; a×10b表示为ab.
    下载: 导出CSV
    Baidu
  • [1]

    Arav N, Edmonds D, Borguet B, Kriss G A, Kaastra J S, Behar E, Bianchi S, Cappi M, Costantini E, Detmers R G, Ebrero J, Mehdipour M, Paltani S, Petrucci P O, Pinto C, Ponti G, Steenbrugge K C, De Vries C P 2012 Astron. Astrophys. 544 A33Google Scholar

    [2]

    Mao J, Kaastra J S, Mehdipour M, Raassen A J J, Gu L, Miller J M 2017 Astron. Astrophys. 607 A100Google Scholar

    [3]

    Feldman U, Doschek G A 2007 At. Data Nucl. Data Tables 93 779Google Scholar

    [4]

    Zatsarinny O, Gorczyca T W, Korista K T, Badnell N R, Savin D W 2004 Astron. Astrophys. 417 1173Google Scholar

    [5]

    Curdt W, Landi E, Feldman U 2004 Astron. Astrophys. 427 1045Google Scholar

    [6]

    Si R, Li S, Wang K, Guo X L, Chen Z B, Yan J, Chen, C Y, Brage T, Zou Y M 2017 Astron. Astrophys. 600 A85Google Scholar

    [7]

    Ramsbottom C, Ballance C, Smyth R, Conroy A, Fernández-Menchero L, Turkington M, Keenan F 2018 Galaxies 6 90Google Scholar

    [8]

    Belmonte M T, Pickering J C, Clear C P, Concepción Mairey F, Liggins F 2018 Galaxies 6 109Google Scholar

    [9]

    Raju P K, Dwivedi B N, Gupta A K 1994 Sol. Phys. 149 289Google Scholar

    [10]

    Lyubimkov L S 2013 Astrophysics 56 472Google Scholar

    [11]

    Koutchmy S, Baudin F, Abdi S, Golub L, Sèvre F 2019 Astron. Astrophys. 632 A86Google Scholar

    [12]

    Feldman U, Doschek G A, Mariska J T, Bhatia A K, Mason H E 1978 Astrophys. J. 226 674Google Scholar

    [13]

    Vilkas M J, Martinson I, Merkelis G, Gaigalas G, Kisielius R 1996 Phys. Scr. 54 281Google Scholar

    [14]

    Safronova U I, Shlyaptseva A S 1999 Phys. Scr. 60 36Google Scholar

    [15]

    Aggarwal K M, Keenan F P, Msezane A Z 2003 Astron. Astrophys. 401 377Google Scholar

    [16]

    Tachiev G, Froese Fischer C 2001 Can. J. Phys. 79 955Google Scholar

    [17]

    Froese Fischer C, Tachiev G 2004 At. Data Nucl. Data Tables 87 1Google Scholar

    [18]

    Gu M F 2005 At. Data Nucl. Data Tables 89 267Google Scholar

    [19]

    Safronova U I, Ralchenko Y, Murakami I, Kato T, Kato D 2006 Phys. Scr. 73 143Google Scholar

    [20]

    Aggarwal K M, Keenan F P, Lawson K D 2008 At. Data Nucl. Data Tables 94 323Google Scholar

    [21]

    Jönsson P, Bieroń J 2010 J. Phys. B: At. Mol. Opt. Phys. 43 074023Google Scholar

    [22]

    Jönsson P, Rynkun P, Gaigalas G 2011 At. Data Nucl. Data Tables 97 648Google Scholar

    [23]

    Liu H, Jiang G, Hu F, Wang C K, Wang Z B, Yang J M 2013 Chin. Phys. B 22 073202Google Scholar

    [24]

    Ekman J, Jönsson P, Gustafsson S, Hartman H, Gaigalas G, Godefroid M R, Froese Fischer C 2014 Astron. Astrophys. 564 A24Google Scholar

    [25]

    Nazé C, Verdebout S, Rynkun P, Gaigalas G, Godefroid M, Jönsson P 2014 At. Data Nucl. Data Tables 100 1197Google Scholar

    [26]

    Wang K, Li D F, Liu H T, Han X Y, Duan B, Li C Y, Li J G, Guo X L, Chen C Y, Yan J 2014 Astrophys. J. Suppl. Ser. 215 26Google Scholar

    [27]

    Alwadie N, Almodlej A, Ben Nessib N, Dimitrijević M S 2020 Contrib. Astron. Obs. Skalnaté Pleso 50 86

    [28]

    Almodlej A, Alrashed H, Ben Nessib N, Dimitrijević M S 2021 Mon. Not. R. Astron. Soc. 507 3228Google Scholar

    [29]

    Tang W, Deng B L, Zhang G S, Meng B, Yang R, Wang S 2025 Indian J. Phys. 99 793Google Scholar

    [30]

    Fricke B 1984 Phys. Scr. 1984 129

    [31]

    Fritzsche S 2002 Phys. Scr. 2002 37

    [32]

    Grant I P 2007 Relativistic Quantum Theory of Atoms and Molecules: Theory and Computation (New York: Springer) pp384-431

    [33]

    Froese Fischer C, Gaigalas G, Jönsson P, Bieroń J 2019 Comput. Phys. Commun. 237 184Google Scholar

    [34]

    Zeng J Y 1981 Advanced Quantum Mechanics VI (Beijing: Science Press) pp389-407

    [35]

    曹铭欣 2019 硕士学位论文 (兰州: 西北师范大学)

    Cao M X 2019 M. S. Thesis (Lanzhou: Northwest Normal University

    [36]

    Borschevsky A, Pašteka L F, Pershina V, Eliav E, Kaldor U 2015 Phys. Rev. A 91 020501Google Scholar

    [37]

    Gaston N, Schwerdtfeger P, Nazarewicz W 2002 Phys. Rev. A 66 062505Google Scholar

    [38]

    Glushkov A V, Ambrosov S V, Loboda A, Chernyakova Y G, Khetselius O Y, Svinarenko A A 2004 Nucl. Phys. A 734 E21Google Scholar

    [39]

    Grant I P 1974 J. Phys. B: Atom. Mol. Phys. 7 1458Google Scholar

    [40]

    Kramida A, Ralchenko Y, Reader J, NIST ASD Team (2024) https://www.nist.gov/pml/atomic-spectra-database [2024-6-5]

    [41]

    McIntyre Jr L C, Donahue D J, Bernstein E M 1978 Phys. Scr. 17 5Google Scholar

    [42]

    Kramida A 2024 Eur. Phys. J. D 78 36Google Scholar

    [43]

    Froese Fischer C, Tachiev G 2004 At. Data Nucl. Data Tables 87 1Google Scholar

    [44]

    Chen M H, Reed K J, McWilliams D M, Guo D S, Barlow L, Lee M, Walker V 1997 At. Data Nucl. Data Tables 65 289Google Scholar

  • [1] 李文博, 李兵兵, 陈浩, 颉录有, 武中文, 丁晓彬, 张登红, 蒋军, 董晨钟. 相对论扭曲波方法研究电子与原子碰撞激发过程.  , doi: 10.7498/aps.74.20241467
    [2] 赵国栋, 曹进, 梁婷, 冯敏, 卢本全, 常宏. 镱原子超精细诱导5d6s 3D1,3→6s2 1S0 E2跃迁及超精细常数的精确计算.  , doi: 10.7498/aps.73.20240028
    [3] 王霞, 贾方石, 姚科, 颜君, 李冀光, 吴勇, 王建国. 类铝离子钟跃迁能级的超精细结构常数和朗德g因子.  , doi: 10.7498/aps.72.20230940
    [4] 张天成, 潘高远, 俞友军, 董晨钟, 丁晓彬. 超重元素Og(Z = 118)及其同主族元素的电离能和价电子轨道束缚能.  , doi: 10.7498/aps.71.20220813
    [5] 马堃, 陈展斌, 黄时中. 等离子体屏蔽效应对Ar16+基态和激发态能级的影响.  , doi: 10.7498/aps.68.20181915
    [6] 张祥, 卢本全, 李冀光, 邹宏新. Hg+离子5d106s 2S1/2→5d96s2 2D5/2钟跃迁同位素位移和超精细结构的理论研究.  , doi: 10.7498/aps.68.20182136
    [7] 牟致栋. Rh XIII—Cd XVI离子4s24p3—4s4p4能级与跃迁的理论计算.  , doi: 10.7498/aps.68.20181976
    [8] 张婷贤, 李冀光, 刘建鹏. Al+离子3s2 1S0→3s3p 3,1P1o跃迁同位素偏移的理论研究.  , doi: 10.7498/aps.67.20172261
    [9] 何恩节, 郑海荣, 高伟, 鹿盈, 李俊娜, 魏映, 王灯, 朱刚强. 锰离子对镥基纳米晶体的荧光调控与增强.  , doi: 10.7498/aps.62.237803
    [10] 蒋利娟, 张现周, 马欢强, 贾光瑞, 张永慧, 夏立华. 啁啾微波场中里德伯钠原子高激发态的布居跃迁.  , doi: 10.7498/aps.61.043101
    [11] 程萍, 张玉明, 张义门. 退火对非故意掺杂4H-SiC外延材料386 nm和388 nm发射峰的影响.  , doi: 10.7498/aps.60.017103
    [12] 胡峰, 杨家敏, 王传珂, 张继彦, 蒋刚, 朱正和. 电子关联效应对金离子的影响.  , doi: 10.7498/aps.60.103104.1
    [13] 李德俊, 米贤武, 邓科. 一维铁磁链中量子孤波的能级和磁矩.  , doi: 10.7498/aps.59.7344
    [14] 杜 泉, 王 玲, 谌晓洪, 高 涛. VOn±(n=0,1,2)的势能函数与光谱常数研究.  , doi: 10.7498/aps.55.6308
    [15] 牟致栋, 魏琦瑛, 陈涤缨. RhXⅢ,PdXⅣ和AgXV离子4s24p3—4s24p25s跃迁的扩展分析.  , doi: 10.7498/aps.55.4070
    [16] 曾雄辉, 赵广军, 张连翰, 何晓明, 杭 寅, 李红军, 徐 军. 铝酸镧单晶体中Ce3+的能级结构和荧光特性.  , doi: 10.7498/aps.54.612
    [17] 侯春风, 郭汝海. 椭圆柱形量子点的能级结构.  , doi: 10.7498/aps.54.1972
    [18] 朱嘉琦, 王景贺, 孟松鹤, 韩杰才, 张连生. 不同能级加速过滤电弧沉积四面体非晶碳膜的结构和性能.  , doi: 10.7498/aps.53.1150
    [19] 毛华平, 王红艳, 唐永建, 朱正和, 郑少涛. 电荷对Cu2n±(n=0,1,2)分子离子的势能函数和能级的影响.  , doi: 10.7498/aps.53.37
    [20] 王宛珏. 类氮KⅩⅢ,CaⅪⅤ,ScⅩⅤ和TiⅩⅥ精细结构能级和跃迁波长的相对论多组态Dirac-Fock计算.  , doi: 10.7498/aps.41.726
计量
  • 文章访问数:  100
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-04-28
  • 修回日期:  2025-07-14
  • 上网日期:  2025-07-17

/

返回文章
返回
Baidu
map