搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

新质量标度下u-d夸克星及其潮汐形变

徐建峰 王靖涛 夏铖君

引用本文:
Citation:

新质量标度下u-d夸克星及其潮汐形变

徐建峰, 王靖涛, 夏铖君

Research on u-d quark stars and their tidal deformaions under new mass scaling

XU Jianfeng, WANG Jingtao, XIA Chengjun
cstr: 32037.14.aps.74.20250535
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 奇异夸克物质(strange quark matter, SQM)被认为是强相互作用的真正基态, 然而近期有研究表明普通夸克物质(u-d quark matter, u-d QM)也有可能是强相互作用的基态. 通过在夸克质量标度中采用伍兹-萨克森势(Woods-Saxon potential)型的衰减因子, 基于等效质量模型对u-d QM状态方程的计算结果表明, 衰减因子的引入增大了u-d QM稳定存在的参数窗口, 使得普通夸克星(u-d quark star, u-d QS)的质量在满足2倍太阳质量的前提下, 同时满足潮汐形变$\varLambda_{1.4} \in [70,580]$, 该计算结果符合目前的相关天文观测数据, 因此脉冲星本质上有可能是u-d QM构成的u-d QS. 本文结果为理解脉冲星的本质提供了一种可能, 也进一步加深了对强相互作用的理解.
    Strange quark matter (SQM) is considered to be the true ground state of the strong interactions, but recent studies have shown that ordinary quark matter (u-d quark matter, u-d QM) may also be the ground state of the strong interactions. By inserting an attenuation factor of Woods-Saxon potential type into the quark mass scaling, the resulting calculations of equation of state of u-d QM based on equiv-particle model show that the stability window of model parameters for stable u-d QM can be significantly enlarged with proper model parameters, which can be seen in the following figure. In this figure, the red solid and dashed lines represent the curves of $ \sqrt{D} $ versus C with and without attenuation factor, respectively, when the minimum value of the average energy per baryon is set to 930 MeV; the blue solid and dashed lines represent the curves of $ \sqrt{D} $ versus C with and without attenuation factor, respectively, when $ m_\mathrm{u}=0 $. Thereby, the red and blue shaded areas are the absolute stable regions of u-d QM without and with attenuation factor in mass scaling. It is obvious that with the attenuation factor and proper model parameters, the absolute stable region (blue shaded area) for u-d QM can be much larger than that without the attenuation factor (red shaded area). The introduction of the attenuation factor allows the maximum mass of ordinary quark star (u-d quark star, u-d QS) to be larger than twice the solar mass, while the tidal deformability satisfies $ \varLambda_{1.4} \in [70,580] $, which is consistent with the current astronomical observations. Therefore, the pulsars may be essentially the u-d QSs. This result provides a possibility for understanding the nature of pulsars, and it also further deepens the understanding of the strong interactions.
      通信作者: 徐建峰, xujf@squ.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 12005005, 12275234)和宿迁学院人才引进科研启动基金(批准号: Xiao2022XRC061)资助的课题.
      Corresponding author: XU Jianfeng, xujf@squ.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 12005005, 12275234) and the Scientifc Research Start-up Fund of Talent Introduction of Suqian University, China (Grant No. Xiao2022XRC061).
    [1]

    Peng G X, Li A, Lombardo U 2008 Phys. Rev. C 77 065807Google Scholar

    [2]

    Weissenborn S, Sagert I, Pagliara G, Hempel M, Schaffner-Bielich J 2011 Astrophys. J. 740 L14Google Scholar

    [3]

    Clemente F D, Casolino M, Drago A, Lattanzi M, Ratti C 2025 Mon. Not. R. Astron. Soc. 537 1056Google Scholar

    [4]

    Li C M, Zheng H R, Zuo S Y, Zhao Y P, Wang F, Huang Y F 2025 Astrophys. J. 980 231Google Scholar

    [5]

    Song X Y 2025 Phys. Rev. D 111 063018Google Scholar

    [6]

    Zhang C 2020 Phys. Rev. D 101 043003Google Scholar

    [7]

    Xu J F, Peng G X, Liu F, Hou D F, Chen L W 2015 Phys. Rev. D 92 025025Google Scholar

    [8]

    Xu R X 2003 Astrophys. J. 596 L59Google Scholar

    [9]

    Peng G X, Chiang H C, Zou B S, Ning P Z, Luo S J 2000 Phys. Rev. C 62 025801Google Scholar

    [10]

    Klähn T, Fischer T 2015 Astrophys. J. 810 134Google Scholar

    [11]

    Xia T, He L Y, Zhuang P F 2013 Phys. Rev. D 88 056013Google Scholar

    [12]

    Wen X J, Feng Z Q, Li N, Peng G X 2009 J. Phys. G 36 025011Google Scholar

    [13]

    Li B L, Cui Z F, Yu Z H, Yan Y, An S, Zong H S 2019 Phys. Rev. D 99 043001Google Scholar

    [14]

    Zhang C, Gao Y, Xia C J, Xu R X 2023 Phys. Rev. D 108 063002Google Scholar

    [15]

    Xia C J, Peng G X, Chen S W, Lu Z Y, Xu J F 2014 Phys. Rev. D 89 105027Google Scholar

    [16]

    Chen S W, Gao L, Peng G X 2012 Chin. Phys. C 36 947Google Scholar

    [17]

    Xu J F, Cui L, Lu Z Y, Xia C J, Peng G X 2023 Nucl. Sci. Tech. 34 171Google Scholar

    [18]

    Demorest P, Pennucci T, Ransom S M, Roberts M S E, Hessels J W T 2010 Nature 467 1081Google Scholar

    [19]

    Antoniadis J, Freire P C C, Wex N, Tauris T M, Lynch R S, Kerkwijk M H V, Kramer M, Bassa C, Dhillon V S, Driebe T, Hessels J W T, Kaspi V M, Kondratiev V I, Langer N, Marsh T R, Mclaughlin M A, Pennucci T T, Ransom S M, Stairs I H, Leeuwen J V, Verbiest P W, Whelan D G 2013 Science 340 1233232Google Scholar

    [20]

    Cromartie H T, Fonseca E, Ransom S M, Demorest P B, Arzoumanian Z, Blumer H, Brook P R, DeCesar M E, Dolch T, Ellis J A, Ferdman R D, Ferrara E C, Garver-Daniels N, Gentile P A, Jones M L, Lam M T, Lorimer D R, Lynch R S, McLaughlin M A, Ng C, Nice D J, Pennucci T T, Spiewak R, Stairs I H, Stovall K, Swiggum J K, Zhu W W 2020 Nat. Astron. 4 72Google Scholar

    [21]

    Fonseca E, Cromartie H T, Pennucci T T, Ray P S, Kirichenko A Y, Ransom S M, Demorest P B, Stairs I H, Arzoumanian Z, Guillemot L, Parthasarathy A, Kerr M, Cognard I, Baker P T, Blumer H, Brook P R, DeCesar M, Dolch T, Dong F A, Ferrara E C, Fiore W, Garver-Daniels N, Good D C, Jennings R, Jones M L, Kaspi V M, Lam M T, Lorimer D R, Luo J, McEwen A, McKee J W, McLaughlin M A, McMann N, Meyers B W, Naidu A, Ng C, Nice D J, Pol N, Radovan H A, ShapiroAlbert B, Tan C M, Tendulkar S P, Swiggum J K, Wahl H M, Zhu W W 2021 Astrophys. J. Lett. 915 L12Google Scholar

    [22]

    Abbott R, Abbott T D, Abraham S, et al, LIGO Scientific and Virgo Collaboration 2020 Astrophys. J. Lett. 896 L44Google Scholar

    [23]

    LIGO Scientific and Virgo Collaboration, Abbott B P, et al. 2016 Phys. Rev. Lett. 116 061102Google Scholar

    [24]

    LIGO Scientific and Virgo Collaboration, Abbott B P, et al. 2017 Astrophys. J. 848 L12Google Scholar

    [25]

    LIGO Scientific and Virgo Collaboration, Abbott B P, et al. 2018 Phys. Rev. Lett. 121 161101Google Scholar

    [26]

    Witten E 1984 Phys. Rev. D 30 272Google Scholar

    [27]

    Farhi E, Jaffe R L 1984 Phys. Rev. D 30 2379Google Scholar

    [28]

    Holdom B, Ren J, Zhang C 2018 Phys. Rev. Lett. 120 222001Google Scholar

    [29]

    Wang J T, Peng G X 2023 Int. J. Mod. Phys. E 32 2350033Google Scholar

    [30]

    Fowler G, Raha S, Weiner R 1981 Z. Phys. C 9 271Google Scholar

    [31]

    Peng G X, Chiang H C, Yang J J, Li L, Liu B 1999 Phys. Rev. C 61 015201Google Scholar

    [32]

    Wen X J, Zhong X H, Peng G X, Shen P N, Ning P Z 2005 Phys. Rev. C 72 015204Google Scholar

    [33]

    Chen H M, Xia C J, Peng G X 2022 Chin. Phys. C 46 055102Google Scholar

    [34]

    Damour T, Nagar A 2009 Phys. Rev. D 80 084035Google Scholar

    [35]

    Fonseca E, Pennucci T T, Ellis J A, Stairs I H, Nice D J, Ransom S M, Demorest P B, Arzoumanian Z, Crowter K, Dolch T, Ferdman R D, Gonzalez M E, Jones G, Jones M L, Lam M T, Levin L, McLaughlin M A, Stovall K, Swiggum J K, Zhu W 2016 Astrophys. J. 832 167Google Scholar

    [36]

    Chu P C, Chen L W 2014 Astrophys. J 780 135Google Scholar

    [37]

    Xu J F, Xia C J, Lu Z Y, Peng G X, Zhao Y P 2022 Nucl. Sci. Tech. 33 143Google Scholar

    [38]

    Xu J F, Cui L, Xia C J, Lu Z Y 2024 Nucl. Phys. Rev. 41 325Google Scholar

    [39]

    Cui S S, Peng G X, Lu Z Y, Peng C, Xu J F 2015 Nucl. Sci. Tech. 26 040503Google Scholar

    [40]

    Yang L, Wen X J 2017 Phys. Rev. D 96 056023Google Scholar

    [41]

    Chu P C, Li X H, Ma H Y, Wang B, Dong Y M, Zhang X M 2018 Phys. Lett. B 2502 447Google Scholar

    [42]

    Felipe R G, Martinez A P, Rojas H P, Orsaria M 2008 Phys. Rev. C 77 015807Google Scholar

    [43]

    Chu P C, Liu H, Du X B 2024 Acta Phys. Sin. 73 052101Google Scholar

    [44]

    Pal S, Chaudhuri G 2024 Phys. Rev. D 110 123021Google Scholar

    [45]

    Zheng X P, Yang S H, Li J R 2003 Astrophys. J. Lett. 585 L135Google Scholar

    [46]

    Gourgoulhon E, Haensel P, Livine R, Paluch E, Bonazzola S, Marck J A 1999 Astron. Astrophys. 349 851Google Scholar

    [47]

    Yuan W L, Li A 2024 Astrophys. J. 996 3Google Scholar

    [48]

    Bai Y, Chen T K 2025 arXiv: 2502.20241 [hep-ph]

  • 图 1  u-d QM的稳定窗口, 红色区域表示在没有考虑衰减因子时的u-d QM的稳定区域, 而蓝色区域表示衰减因子引入后u-d QM的稳定区域. 在图(a)–(c)中, 红色实线与红色虚线分别表示包含衰减因子与不包含衰减因子且当平均重子能量最小值等于930 MeV时$ \sqrt{D} $随C的变化曲线. 蓝色实线与蓝色虚线分别表示包含衰减因子与不包含衰减因子且当$ m_\mathrm{u}=0 $时$ \sqrt{D} $随C的变化曲线. 图(a)–(c)中的$ (w/\mathrm{fm}^{-3} $, $ n_{\mathrm{a}}/\mathrm{fm}^{-3}) $参数取值从上往下分别为(4.0, 0.6), (1.0, 0.6) 和(1.0, 2.0)

    Fig. 1.  Stability window for u-d QM, the red and blue areas are the absolute stable regions for u-d QM without and with attenuation factor in mass scaling. In the panels (a)–(c), the red solid and dashed lines represent the curves of $ \sqrt{D} $ versus C with and without attenuation factor, respectively, when the minimum value of the average energy per baryon is 930 MeV. The blue solid and dashed lines represent the curves of $ \sqrt{D} $ versus C with and without attenuation factor, respectively, when $ m_\mathrm{u}=0 $. The values of parameters $ (w/\mathrm{fm}^{-3}, n_{\mathrm{a}}/\mathrm{fm}^{-3}) $ in the panels (a)–(c) are (4.0, 0.6), (1.0, 0.6), and (1.0, 2.0) from top to bottom.

    图 2  衰减因子随密度的变化曲线

    Fig. 2.  Curves of the attenuation factor as function of baryon number density.

    图 3  平均重子能量与压强随密度的变化曲线

    Fig. 3.  Curves of energy per baryon and pressure as functions of baryon number density.

    图 4  潮汐形变Λ和QS质量M随QS中心密度$ n_0 $的变化曲线, 各分图中的蓝色实线为Λ随$ n_0 $的变化曲线, 其值对应于左纵轴; 红色实线为M随$ n_0 $的变化曲线, 其值对应于右纵轴. (a)—(c)中的参数值与图1(a)(c)中的参数值相同

    Fig. 4.  Curves of tidal deformability Λ and QS mass M as functions of central density $ n_0 $ of quark star, the blue solid curves corresponding to the left axis represent Λ versus $ n_0 $; the red solid curves corresponding to right axis represent M versus $ n_0 $. The parameters of panels (a)—(c) are the same with that in Fig. 1(a)(c)

    图 5  u-d QS的质量-半径关系. 图中黑色、红色和蓝色曲线的参数分别与图1(a)(c)中的参数相同

    Fig. 5.  Mass-radius relations of u-d QSs. The parameter values for the black, red and blue curves are corresponding to that given in the three sub-figures in Fig. 1(a)(c).

    表 1  当衰减因子参数$ (w/\mathrm{fm}^{-3}, n_{\mathrm{a}}/\mathrm{fm}^{-3}) $分别取$ (4.0, 0.6), (1.0, 0.6) $和$ (1.0, 2.0) $时u-d QS的最大质量, 最大质量u-d QS的半径, 以及与潮汐形变范围$ \varLambda_{1.4} \in $$ [70, 580] $相对应的u-d QS中心密度范围和质量范围

    Table 1.  Maximum masses and corresponding radii of u-d QSs under $ (w/\mathrm{fm}^{-3}, n_{\mathrm{a}}/\mathrm{fm}^{-3})= (4.0, 0.6),\; (1.0, 0.6), $$ (1.0, 2.0)$, as well as the central density range and mass range of u-d quark stars for the tidal deformability range $ \varLambda_{1.4} \in [70, 580] $.

    Parameter $ M_\mathrm{max}/{M}_\odot $ R/km $ n_0/\mathrm{fm}^{-3} $ $ M/{M}_\odot $
    (a) 2.136 11.681 [0.369, 0.560] [1.449, 1.990]
    (b) 2.150 10.927 [0.421, 0.562] [1.302, 1.869]
    (c) 2.090 11.021 [0.410, 0.582] [1.343, 1.887]
    下载: 导出CSV
    Baidu
  • [1]

    Peng G X, Li A, Lombardo U 2008 Phys. Rev. C 77 065807Google Scholar

    [2]

    Weissenborn S, Sagert I, Pagliara G, Hempel M, Schaffner-Bielich J 2011 Astrophys. J. 740 L14Google Scholar

    [3]

    Clemente F D, Casolino M, Drago A, Lattanzi M, Ratti C 2025 Mon. Not. R. Astron. Soc. 537 1056Google Scholar

    [4]

    Li C M, Zheng H R, Zuo S Y, Zhao Y P, Wang F, Huang Y F 2025 Astrophys. J. 980 231Google Scholar

    [5]

    Song X Y 2025 Phys. Rev. D 111 063018Google Scholar

    [6]

    Zhang C 2020 Phys. Rev. D 101 043003Google Scholar

    [7]

    Xu J F, Peng G X, Liu F, Hou D F, Chen L W 2015 Phys. Rev. D 92 025025Google Scholar

    [8]

    Xu R X 2003 Astrophys. J. 596 L59Google Scholar

    [9]

    Peng G X, Chiang H C, Zou B S, Ning P Z, Luo S J 2000 Phys. Rev. C 62 025801Google Scholar

    [10]

    Klähn T, Fischer T 2015 Astrophys. J. 810 134Google Scholar

    [11]

    Xia T, He L Y, Zhuang P F 2013 Phys. Rev. D 88 056013Google Scholar

    [12]

    Wen X J, Feng Z Q, Li N, Peng G X 2009 J. Phys. G 36 025011Google Scholar

    [13]

    Li B L, Cui Z F, Yu Z H, Yan Y, An S, Zong H S 2019 Phys. Rev. D 99 043001Google Scholar

    [14]

    Zhang C, Gao Y, Xia C J, Xu R X 2023 Phys. Rev. D 108 063002Google Scholar

    [15]

    Xia C J, Peng G X, Chen S W, Lu Z Y, Xu J F 2014 Phys. Rev. D 89 105027Google Scholar

    [16]

    Chen S W, Gao L, Peng G X 2012 Chin. Phys. C 36 947Google Scholar

    [17]

    Xu J F, Cui L, Lu Z Y, Xia C J, Peng G X 2023 Nucl. Sci. Tech. 34 171Google Scholar

    [18]

    Demorest P, Pennucci T, Ransom S M, Roberts M S E, Hessels J W T 2010 Nature 467 1081Google Scholar

    [19]

    Antoniadis J, Freire P C C, Wex N, Tauris T M, Lynch R S, Kerkwijk M H V, Kramer M, Bassa C, Dhillon V S, Driebe T, Hessels J W T, Kaspi V M, Kondratiev V I, Langer N, Marsh T R, Mclaughlin M A, Pennucci T T, Ransom S M, Stairs I H, Leeuwen J V, Verbiest P W, Whelan D G 2013 Science 340 1233232Google Scholar

    [20]

    Cromartie H T, Fonseca E, Ransom S M, Demorest P B, Arzoumanian Z, Blumer H, Brook P R, DeCesar M E, Dolch T, Ellis J A, Ferdman R D, Ferrara E C, Garver-Daniels N, Gentile P A, Jones M L, Lam M T, Lorimer D R, Lynch R S, McLaughlin M A, Ng C, Nice D J, Pennucci T T, Spiewak R, Stairs I H, Stovall K, Swiggum J K, Zhu W W 2020 Nat. Astron. 4 72Google Scholar

    [21]

    Fonseca E, Cromartie H T, Pennucci T T, Ray P S, Kirichenko A Y, Ransom S M, Demorest P B, Stairs I H, Arzoumanian Z, Guillemot L, Parthasarathy A, Kerr M, Cognard I, Baker P T, Blumer H, Brook P R, DeCesar M, Dolch T, Dong F A, Ferrara E C, Fiore W, Garver-Daniels N, Good D C, Jennings R, Jones M L, Kaspi V M, Lam M T, Lorimer D R, Luo J, McEwen A, McKee J W, McLaughlin M A, McMann N, Meyers B W, Naidu A, Ng C, Nice D J, Pol N, Radovan H A, ShapiroAlbert B, Tan C M, Tendulkar S P, Swiggum J K, Wahl H M, Zhu W W 2021 Astrophys. J. Lett. 915 L12Google Scholar

    [22]

    Abbott R, Abbott T D, Abraham S, et al, LIGO Scientific and Virgo Collaboration 2020 Astrophys. J. Lett. 896 L44Google Scholar

    [23]

    LIGO Scientific and Virgo Collaboration, Abbott B P, et al. 2016 Phys. Rev. Lett. 116 061102Google Scholar

    [24]

    LIGO Scientific and Virgo Collaboration, Abbott B P, et al. 2017 Astrophys. J. 848 L12Google Scholar

    [25]

    LIGO Scientific and Virgo Collaboration, Abbott B P, et al. 2018 Phys. Rev. Lett. 121 161101Google Scholar

    [26]

    Witten E 1984 Phys. Rev. D 30 272Google Scholar

    [27]

    Farhi E, Jaffe R L 1984 Phys. Rev. D 30 2379Google Scholar

    [28]

    Holdom B, Ren J, Zhang C 2018 Phys. Rev. Lett. 120 222001Google Scholar

    [29]

    Wang J T, Peng G X 2023 Int. J. Mod. Phys. E 32 2350033Google Scholar

    [30]

    Fowler G, Raha S, Weiner R 1981 Z. Phys. C 9 271Google Scholar

    [31]

    Peng G X, Chiang H C, Yang J J, Li L, Liu B 1999 Phys. Rev. C 61 015201Google Scholar

    [32]

    Wen X J, Zhong X H, Peng G X, Shen P N, Ning P Z 2005 Phys. Rev. C 72 015204Google Scholar

    [33]

    Chen H M, Xia C J, Peng G X 2022 Chin. Phys. C 46 055102Google Scholar

    [34]

    Damour T, Nagar A 2009 Phys. Rev. D 80 084035Google Scholar

    [35]

    Fonseca E, Pennucci T T, Ellis J A, Stairs I H, Nice D J, Ransom S M, Demorest P B, Arzoumanian Z, Crowter K, Dolch T, Ferdman R D, Gonzalez M E, Jones G, Jones M L, Lam M T, Levin L, McLaughlin M A, Stovall K, Swiggum J K, Zhu W 2016 Astrophys. J. 832 167Google Scholar

    [36]

    Chu P C, Chen L W 2014 Astrophys. J 780 135Google Scholar

    [37]

    Xu J F, Xia C J, Lu Z Y, Peng G X, Zhao Y P 2022 Nucl. Sci. Tech. 33 143Google Scholar

    [38]

    Xu J F, Cui L, Xia C J, Lu Z Y 2024 Nucl. Phys. Rev. 41 325Google Scholar

    [39]

    Cui S S, Peng G X, Lu Z Y, Peng C, Xu J F 2015 Nucl. Sci. Tech. 26 040503Google Scholar

    [40]

    Yang L, Wen X J 2017 Phys. Rev. D 96 056023Google Scholar

    [41]

    Chu P C, Li X H, Ma H Y, Wang B, Dong Y M, Zhang X M 2018 Phys. Lett. B 2502 447Google Scholar

    [42]

    Felipe R G, Martinez A P, Rojas H P, Orsaria M 2008 Phys. Rev. C 77 015807Google Scholar

    [43]

    Chu P C, Liu H, Du X B 2024 Acta Phys. Sin. 73 052101Google Scholar

    [44]

    Pal S, Chaudhuri G 2024 Phys. Rev. D 110 123021Google Scholar

    [45]

    Zheng X P, Yang S H, Li J R 2003 Astrophys. J. Lett. 585 L135Google Scholar

    [46]

    Gourgoulhon E, Haensel P, Livine R, Paluch E, Bonazzola S, Marck J A 1999 Astron. Astrophys. 349 851Google Scholar

    [47]

    Yuan W L, Li A 2024 Astrophys. J. 996 3Google Scholar

    [48]

    Bai Y, Chen T K 2025 arXiv: 2502.20241 [hep-ph]

  • [1] 初鹏程, 刘玉珩, 刘鹤, 刘宏铭, 杨永杭. 强磁场与有限温度下色味锁夸克星的唯象模型.  , 2025, 74(14): 142101. doi: 10.7498/aps.74.20250451
    [2] 初鹏程, 刘鹤, 杜先斌. 色味锁夸克物质与夸克星.  , 2024, 73(5): 052101. doi: 10.7498/aps.73.20231649
    [3] 刁彬, 许妍, 黄修林, 王夷博. 利用含δ介子的相对论平均场理论研究中子星潮汐形变性质.  , 2023, 72(2): 022601. doi: 10.7498/aps.72.20221599
    [4] 王谊农, 初鹏程, 姜瑶瑶, 庞晓迪, 王圣博, 李培新. 基于准粒子模型的原生磁星研究.  , 2022, 71(22): 222101. doi: 10.7498/aps.71.20220795
    [5] 田宝贤, 王钊, 胡凤明, 高智星, 班晓娜, 李静. “天光一号”驱动的聚苯乙烯高压状态方程测量.  , 2021, 70(19): 196401. doi: 10.7498/aps.70.20210240
    [6] 汤文辉, 徐彬彬, 冉宪文, 徐志宏. 高温等离子体的状态方程及其热力学性质.  , 2017, 66(3): 030505. doi: 10.7498/aps.66.030505
    [7] 张其黎, 张弓木, 赵艳红, 刘海风. 氘、氦及其混合物状态方程第一原理研究.  , 2015, 64(9): 094702. doi: 10.7498/aps.64.094702
    [8] 贾果, 黄秀光, 谢志勇, 叶君建, 方智恒, 舒桦, 孟祥富, 周华珍, 傅思祖. 液氘状态方程实验数据测量.  , 2015, 64(16): 166401. doi: 10.7498/aps.64.166401
    [9] 周洪强, 于明, 孙海权, 何安民, 陈大伟, 张凤国, 王裴, 邵建立. 混合物状态方程的计算.  , 2015, 64(6): 064702. doi: 10.7498/aps.64.064702
    [10] 韩勇, 龙新平, 郭向利. 一种简化维里型状态方程预测高温甲烷PVT关系.  , 2014, 63(15): 150505. doi: 10.7498/aps.63.150505
    [11] 包特木尔巴根, 杨兴强, 喻孜. 密度依赖口袋常数下奇异物质的热力学自洽处理及其对混合星性质的影响.  , 2013, 62(1): 012101. doi: 10.7498/aps.62.012101
    [12] 李风姣, 贺端威, 柳雷, 张毅, 敬秋民, 刘盛刚, 陈海花, 毕延, 徐济安. -Ce中的高压纵波声子模软化和状态方程描述.  , 2012, 61(11): 116401. doi: 10.7498/aps.61.116401
    [13] 蒋国平, 焦楚杰, 肖波齐. 高强混凝土气体炮试验与高压状态方程研究.  , 2012, 61(2): 026701. doi: 10.7498/aps.61.026701
    [14] 袁都奇. Fermi气体在势阱中的最大囚禁范围与状态方程.  , 2011, 60(6): 060509. doi: 10.7498/aps.60.060509
    [15] 宋萍, 蔡灵仓. Grüneisen系数与铝的高温高压状态方程.  , 2009, 58(3): 1879-1884. doi: 10.7498/aps.58.1879
    [16] 王江华, 贺端威. 金刚石压砧内单轴应力场对物质状态方程测量的影响.  , 2008, 57(6): 3397-3401. doi: 10.7498/aps.57.3397
    [17] 张 超, 孙久勋, 田荣刚, 邹世勇. 氮化硅α,β和γ相的解析状态方程和热物理性质.  , 2007, 56(10): 5969-5973. doi: 10.7498/aps.56.5969
    [18] 过增元, 曹炳阳, 朱宏晔, 张清光. 声子气的状态方程和声子气运动的守恒方程.  , 2007, 56(6): 3306-3312. doi: 10.7498/aps.56.3306
    [19] 田春玲, 刘福生, 蔡灵仓, 经福谦. 多体相互作用对高压固氦状态方程的影响.  , 2006, 55(2): 764-769. doi: 10.7498/aps.55.764
    [20] 黄秀光, 罗平庆, 傅思祖, 顾援, 马民勋, 吴江, 何钜华. 一种激光驱动高压状态方程绝对测量方法的探索.  , 2002, 51(2): 337-341. doi: 10.7498/aps.51.337
计量
  • 文章访问数:  410
  • PDF下载量:  15
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-04-23
  • 修回日期:  2025-05-25
  • 上网日期:  2025-06-18
  • 刊出日期:  2025-08-20

/

返回文章
返回
Baidu
map