搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于优化粒子群-反向传播的温度补偿型空芯光纤法珀应变传感器

苏蕊 葛益娴 林永杰

引用本文:
Citation:

基于优化粒子群-反向传播的温度补偿型空芯光纤法珀应变传感器

苏蕊, 葛益娴, 林永杰

Temperature-compensated hollow-core fiber Fabry-Perot strain sensor based on optimized particle swarm optimization-back propagation algorithm

SU Rui, GE Yixian, LIN Yongjie
cstr: 32037.14.aps.74.20250524
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 环境温度变化常会引起光纤法珀应变传感器的测量误差. 为有效补偿温度对测量结果的影响, 本文提出了一种优化的粒子群-反向传播(particle swarm optimization-back propagation, PSO-BP)神经网络算法. 该算法直接将温度和光纤法珀应变传感器测得的光谱峰值漂移数据作为实验样本输入, 建立温度补偿神经网络系统模型, 采用自适应调整惯性权重和学习因子动态优化调整机制, 提高了算法的全局搜索能力和局部收敛精度, 从而实现对温度干扰的有效补偿. 实验结果表明, 在整个传感器的温度测量范围内, 基于优化PSO-BP算法的平均绝对百分比误差为1.2%, 相比传统的BP算法和PSO-BP算法的平均绝对百分比误差分别改进了57.14%和45.45%, 且不同温度下R2普遍在0.995以上, 这表明模型能够在不同温度条件下准确预测应变值, 从而实现有效的温度补偿, 为低成本高精度传感系统的开发提供了新的技术途径.
    Ambient temperature fluctuations often induce measurement errors in fiber-optic Fabry-Perot strain sensors. To effectively compensate for the influence of temperature on measurement accuracy, this study proposes an optimized particle swarm optimization-back propagation (PSO-BP) neural network algorithm. The combined predictive model is applied to the monitoring data of a Fabry-Perot strain sensor based on a single-mode fiber-hollow-core fiber-single-mode fiber (SMF-HCF-SMF) structure. By preprocessing the data collected from the sensor, the temperature values and spectral valley shift data obtained from the fiber-optic Fabry-Perot strain sensor are directly used as input features to establish a temperature-compensated neural network model. Based on the traditional PSO-BP neural network algorithm, an optimization strategy incorporating adaptive adjustment of inertia weights and learning factors is employed to enhance global search capability and local convergence accuracy, thereby enabling effective compensation for temperature-induced effects.Experimental results demonstrate that in the entire temperature measurement range of the sensor, the optimized PSO-BP neural network achieves a mean absolute percentage error (MAPE) of about 1.2% and a root mean square error (RMSE) of about 5.9, significantly outperforming other methods. Comparative analysis with different model architectures reveals that compared with the BP, PSO-BP, RF, and GA-BP models, the optimized PSO-BP model improves MAPE by 57.14%, 45.45%, 73.91%, and 53.85%, respectively, while reducing RMSE by 68.11%, 52.42%, 72.94%, and 63.13%. Moreover, the coefficient of determination (R2) consistently exceeds 0.995 under various temperature conditions, indicating that the model effectively compensates for temperature-induced errors in the sensor under different thermal and strain conditions, and has excellent stability and adaptability.Therefore, the temperature compensation method proposed in this study not only offers a novel approach for improving the measurement accuracy of fiber-optic Fabry-Perot strain sensors, but also provides a valuable reference for studying the temperature compensation in related sensor technologies. Future research may further explore the applicability of this method to other types of sensors, thereby promoting the sustaining development of intelligent sensing technologies.
      通信作者: 葛益娴, geyixian820925@163.com
    • 基金项目: 国家自然科学基金(批准号: 61307061)资助的课题.
      Corresponding author: GE Yixian, geyixian820925@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61307061).
    [1]

    冯德全, 罗小东, 樊伟, 朱宝辉, 乔学光 2021 光学学报 41 2106004Google Scholar

    Feng D Q, Luo X D, Fan W, Zhu B H, Qiao X G 2021 Acta Opt. Sin. 41 2106004Google Scholar

    [2]

    田晨, 陈海滨, 胡锴, 张军英, 王伟 2022 光电子·激光 33 865Google Scholar

    Tian C, Chen H B, Hu K, Zhang J Y, Wang W 2022 J. Optoelectron. Laser 33 865Google Scholar

    [3]

    Xiao Y, Cheng J 2024 Sensors 24 7805Google Scholar

    [4]

    Bian Q, Podhrazsky A, Bauer C, Stadler A, Buchfellner F, Kuttler R, Jakobi M, Volk W, Koch A W, Roths J 2022 Opt. Express 30 33449Google Scholar

    [5]

    芮菲, 葛益娴, 苏蕊, 倪海彬 2024 光学学报 44 1606004Google Scholar

    Rui F, Ge Y X, Su R, Ni H B 2024 Acta Opt. Sin. 44 1606004Google Scholar

    [6]

    陈鸣, 常建华, 徐遥, 金澳博, 胡子怡 2023 光学学报 43 2306001Google Scholar

    Chen M, Chang J H, Xu Y, Jin A B, Hu Z Y 2023 Acta Opt. Sin. 43 2306001Google Scholar

    [7]

    孙家程, 王婷婷, 戴洋, 常建华, 柯炜 2021 70 064202Google Scholar

    Sun J C, Wang T T, Dai Y, Chang J H, Ke W 2021 Acta Phys. Sin. 70 064202Google Scholar

    [8]

    王雅莉, 徒芸, 涂善东, 于新海, 郭永宁, 任利杰, 陈时健 2023 仪表技术与传感器 43 26Google Scholar

    Wang Y L, Tu Y, Tu S D, Yu X H, Guo Y N, Ren L J, Chen S J 2023 Instrum. Tech. Sens. 43 26Google Scholar

    [9]

    Ding X, Chen N, Jin T, Zhang X D, Zhang R F 2023 Opt. Laser Technol. 162 109302Google Scholar

    [10]

    赵勇, 蔡露, 李雪刚, 吕日清 2017 66 070601Google Scholar

    Zhao Y, Cai L, Li X G, Lü R Q 2017 Acta Phys. Sin. 66 070601Google Scholar

    [11]

    吴倩, 张诸宇, 郭晓晨, 施伟华 2018 67 184212Google Scholar

    Wu Q, Zhang Z Y, Guo X C, Shi W H 2018 Acta Phys. Sin. 67 184212Google Scholar

    [12]

    Cao Y, Xu W Y, Lin B, Zhu Y, Meng F C, Zhao X T, Ding J M, Lou S Q, Wang X, He J W, Sheng X Z, Liang S 2022 Appl. Opt. 61 8212Google Scholar

    [13]

    杨建宇, 梁磊, 唐浩冕, 谢官模, 徐刚 2020 光电子·激光 31 351Google Scholar

    Yang J Y, Liang L, Tang H M, Xie G M, Xu G 2020 J. Optoelectron. Laser 31 351Google Scholar

    [14]

    李勇志, 金东洋, 黄文雪, 胡久龄, 景殿涛 2022 压电与声光 44 873Google Scholar

    Li Y Z, Jin D Y, Huang W X, Hu J L, Jing D T 2022 Piezoelectr. Acoustoopt. 44 873Google Scholar

    [15]

    孙超, 郭乃宇, 叶力, 苗隆鑫, 曹勉, 丁建军, 严明蝶 2022 压电与声光 44 85Google Scholar

    Sun C, Guo N Y, Ye L, Miao L X, Cao M, Ding J J, Yan M D 2022 Piezoelectr. Acoustoopt 44 85Google Scholar

    [16]

    孙萌萌 2023 硕士学位论文(南京: 南京信息工程大学)

    Sun M M 2023 M. S. Thesis (Nanjing: Nanjing University of Information Science and Technology

    [17]

    张金文 2023 硕士学位论文(哈尔滨: 黑龙江大学)

    Zhang J W 2023 M. S. Thesis (Harbin: Heilongjiang University

    [18]

    Yu W, Qu H, Zhang Y 2023 Sensors 23 7823Google Scholar

    [19]

    Li Y J, Li Y H, Li F, Zhao B, Li Q Q 2015 Math. Probl. Eng. 2015 854945Google Scholar

    [20]

    Wei L X, Zhang Y, Ji L I, Ye L, Zhu X C, Fu J 2022 Energies 15 5880Google Scholar

    [21]

    Zhou Z W, Gong H Y, You J, Liu S B, He J L 2021 Mater. Today Commun. 28 102507Google Scholar

    [22]

    周勇 2024 测绘与空间地理信息 47 217Google Scholar

    Zhou Y 2024 Geomatics & Spatial Information Technology 47 217Google Scholar

    [23]

    Li X, Ke S C, Li Y, Jin W, Fu X H, Fu G W, Bi W H 2024 Opt. Laser Technol. 176 110973Google Scholar

  • 图 1  传感器结构示意图

    Fig. 1.  Structural diagram of sensor.

    图 2  传感器温度仿真反射光谱漂移图

    Fig. 2.  Temperature-induced drift in simulated reflectance spectra of sensors.

    图 3  传感器应变测试 (a) 反射光谱漂移图; (b) 线性拟合图

    Fig. 3.  Sensor strain test: (a) Reflection spectrum drift map; (b) linear fitting map.

    图 4  温度漂移实验装置图

    Fig. 4.  Temperature drift experiment device diagram.

    图 5  温度标定实验下不同温度光纤应变传感器的波谷漂移波长特性曲线

    Fig. 5.  Wavelength drift characteristics curve of fiber optic strain sensors at different temperatures under temperature calibration experiment.

    图 6  卡尔曼滤波前后信噪比对比

    Fig. 6.  Comparison of SNR before and after Kalman filtering

    图 7  优化PSO-BP神经网络流程图

    Fig. 7.  Flowchart of the optimized PSO-BP neural network.

    图 8  优化PSO-BP神经网络结构图

    Fig. 8.  Structural diagram of the optimized PSO-BP neural network.

    图 9  训练结果 (a) 预测输出; (b) 相对误差

    Fig. 9.  Training results: (a) Predicted output; (b) relative error.

    图 10  不同温度下应变预测值与实际值对比图 (a) 优化前; (b) 优化后

    Fig. 10.  Comparison of predicted and actual strain values at different temperatures: (a) Before optimization; (b) after optimization.

    图 11  不同神经网络模型对比

    Fig. 11.  Comparison of different neural network models.

    表 1  不同隐藏层误差对比

    Table 1.  Comparison of errors for different hidden layers.

    隐藏层
    节点个数
    3 4 5 6 7 8 9 10 11
    MAPE/% 1.96 2.16 1.93 1.47 2.08 1.60 1.96 1.21 1.92
    下载: 导出CSV

    表 2  不同神经网络模型对比

    Table 2.  Comparison of different neural network models.

    性能指标BPPSO-BPRFGA-BP优化PSO-BP
    MAPE/%2.82.24.62.61.2
    RMSE18.512.421.816.05.9
    下载: 导出CSV
    Baidu
  • [1]

    冯德全, 罗小东, 樊伟, 朱宝辉, 乔学光 2021 光学学报 41 2106004Google Scholar

    Feng D Q, Luo X D, Fan W, Zhu B H, Qiao X G 2021 Acta Opt. Sin. 41 2106004Google Scholar

    [2]

    田晨, 陈海滨, 胡锴, 张军英, 王伟 2022 光电子·激光 33 865Google Scholar

    Tian C, Chen H B, Hu K, Zhang J Y, Wang W 2022 J. Optoelectron. Laser 33 865Google Scholar

    [3]

    Xiao Y, Cheng J 2024 Sensors 24 7805Google Scholar

    [4]

    Bian Q, Podhrazsky A, Bauer C, Stadler A, Buchfellner F, Kuttler R, Jakobi M, Volk W, Koch A W, Roths J 2022 Opt. Express 30 33449Google Scholar

    [5]

    芮菲, 葛益娴, 苏蕊, 倪海彬 2024 光学学报 44 1606004Google Scholar

    Rui F, Ge Y X, Su R, Ni H B 2024 Acta Opt. Sin. 44 1606004Google Scholar

    [6]

    陈鸣, 常建华, 徐遥, 金澳博, 胡子怡 2023 光学学报 43 2306001Google Scholar

    Chen M, Chang J H, Xu Y, Jin A B, Hu Z Y 2023 Acta Opt. Sin. 43 2306001Google Scholar

    [7]

    孙家程, 王婷婷, 戴洋, 常建华, 柯炜 2021 70 064202Google Scholar

    Sun J C, Wang T T, Dai Y, Chang J H, Ke W 2021 Acta Phys. Sin. 70 064202Google Scholar

    [8]

    王雅莉, 徒芸, 涂善东, 于新海, 郭永宁, 任利杰, 陈时健 2023 仪表技术与传感器 43 26Google Scholar

    Wang Y L, Tu Y, Tu S D, Yu X H, Guo Y N, Ren L J, Chen S J 2023 Instrum. Tech. Sens. 43 26Google Scholar

    [9]

    Ding X, Chen N, Jin T, Zhang X D, Zhang R F 2023 Opt. Laser Technol. 162 109302Google Scholar

    [10]

    赵勇, 蔡露, 李雪刚, 吕日清 2017 66 070601Google Scholar

    Zhao Y, Cai L, Li X G, Lü R Q 2017 Acta Phys. Sin. 66 070601Google Scholar

    [11]

    吴倩, 张诸宇, 郭晓晨, 施伟华 2018 67 184212Google Scholar

    Wu Q, Zhang Z Y, Guo X C, Shi W H 2018 Acta Phys. Sin. 67 184212Google Scholar

    [12]

    Cao Y, Xu W Y, Lin B, Zhu Y, Meng F C, Zhao X T, Ding J M, Lou S Q, Wang X, He J W, Sheng X Z, Liang S 2022 Appl. Opt. 61 8212Google Scholar

    [13]

    杨建宇, 梁磊, 唐浩冕, 谢官模, 徐刚 2020 光电子·激光 31 351Google Scholar

    Yang J Y, Liang L, Tang H M, Xie G M, Xu G 2020 J. Optoelectron. Laser 31 351Google Scholar

    [14]

    李勇志, 金东洋, 黄文雪, 胡久龄, 景殿涛 2022 压电与声光 44 873Google Scholar

    Li Y Z, Jin D Y, Huang W X, Hu J L, Jing D T 2022 Piezoelectr. Acoustoopt. 44 873Google Scholar

    [15]

    孙超, 郭乃宇, 叶力, 苗隆鑫, 曹勉, 丁建军, 严明蝶 2022 压电与声光 44 85Google Scholar

    Sun C, Guo N Y, Ye L, Miao L X, Cao M, Ding J J, Yan M D 2022 Piezoelectr. Acoustoopt 44 85Google Scholar

    [16]

    孙萌萌 2023 硕士学位论文(南京: 南京信息工程大学)

    Sun M M 2023 M. S. Thesis (Nanjing: Nanjing University of Information Science and Technology

    [17]

    张金文 2023 硕士学位论文(哈尔滨: 黑龙江大学)

    Zhang J W 2023 M. S. Thesis (Harbin: Heilongjiang University

    [18]

    Yu W, Qu H, Zhang Y 2023 Sensors 23 7823Google Scholar

    [19]

    Li Y J, Li Y H, Li F, Zhao B, Li Q Q 2015 Math. Probl. Eng. 2015 854945Google Scholar

    [20]

    Wei L X, Zhang Y, Ji L I, Ye L, Zhu X C, Fu J 2022 Energies 15 5880Google Scholar

    [21]

    Zhou Z W, Gong H Y, You J, Liu S B, He J L 2021 Mater. Today Commun. 28 102507Google Scholar

    [22]

    周勇 2024 测绘与空间地理信息 47 217Google Scholar

    Zhou Y 2024 Geomatics & Spatial Information Technology 47 217Google Scholar

    [23]

    Li X, Ke S C, Li Y, Jin W, Fu X H, Fu G W, Bi W H 2024 Opt. Laser Technol. 176 110973Google Scholar

  • [1] 王伟, 李金洋, 毛国培, 杨艳, 高志强, 马骢, 钟翔雨, 史青. 温度弱敏感光纤高温压力传感器.  , 2024, 73(1): 014208. doi: 10.7498/aps.73.20231155
    [2] 李建宇, 董忠级, 张吉宏, 史雯慧, 郑加金, 韦玮. 具有温度自补偿的保偏光纤布拉格光栅多参量传感器的设计与制备.  , 2023, 72(14): 144206. doi: 10.7498/aps.72.20230478
    [3] 马天兵, 訾保威, 郭永存, 凌六一, 黄友锐, 贾晓芬. 基于拟合衰减差自补偿的分布式光纤温度传感器.  , 2020, 69(3): 030701. doi: 10.7498/aps.69.20191456
    [4] 张伟, 刘颖刚, 张庭, 刘鑫, 傅海威, 贾振安. 芯内双微孔复合腔结构的光纤法布里-珀罗传感器研究.  , 2018, 67(20): 204203. doi: 10.7498/aps.67.20180528
    [5] 杨易, 徐贲, 刘亚铭, 李萍, 王东宁, 赵春柳. 基于游标效应的增敏型光纤法布里-珀罗干涉仪温度传感器.  , 2017, 66(9): 094205. doi: 10.7498/aps.66.094205
    [6] 饶云江. 长距离分布式光纤传感技术研究进展.  , 2017, 66(7): 074207. doi: 10.7498/aps.66.074207
    [7] 苗银萍, 靳伟, 杨帆, 林粤川, 谭艳珍, 何海律. 光纤光热干涉气体检测技术研究进展.  , 2017, 66(7): 074212. doi: 10.7498/aps.66.074212
    [8] 李自亮, 廖常锐, 刘申, 王义平. 光纤法布里-珀罗干涉温度压力传感技术研究进展.  , 2017, 66(7): 070708. doi: 10.7498/aps.66.070708
    [9] 桂鑫, 胡陈晨, 谢莹, 李政颖. 分布式本征型法布里-珀罗传感器的研究.  , 2015, 64(5): 050704. doi: 10.7498/aps.64.050704
    [10] 娄淑琴, 鹿文亮, 王鑫. 同时测量扭转角度和扭转方向的侧漏光子晶体光纤扭转传感器.  , 2013, 62(9): 090701. doi: 10.7498/aps.62.090701
    [11] 冯李航, 曾捷, 梁大开, 张为公. 契形结构光纤表面等离子体共振传感器研究.  , 2013, 62(12): 124207. doi: 10.7498/aps.62.124207
    [12] 龚元, 郭宇, 饶云江, 赵天, 吴宇, 冉曾令. 光纤法布里-珀罗复合结构折射率传感器的灵敏度分析.  , 2011, 60(6): 064202. doi: 10.7498/aps.60.064202
    [13] 朱化春, 张淳民, 简小华. 新型风成像干涉仪温度补偿理论研究.  , 2010, 59(2): 893-898. doi: 10.7498/aps.59.893
    [14] 王泽锋, 胡永明, 孟洲, 罗洪, 倪明. 四阶声低通滤波光纤水听器的声压灵敏度频响特性.  , 2009, 58(10): 7034-7043. doi: 10.7498/aps.58.7034
    [15] 王泽锋, 胡永明, 孟洲, 罗洪, 倪明. 含侧腔的机械抗混叠声低通滤波光纤水听器.  , 2009, 58(12): 8352-8356. doi: 10.7498/aps.58.8352
    [16] 俞阿龙. 基于小波神经网络的振动速度传感器幅频特性补偿研究.  , 2007, 56(6): 3166-3171. doi: 10.7498/aps.56.3166
    [17] 赵 瑞, 徐荣青, 沈中华, 陆 建, 倪晓武. 黏性液体中激光空泡脉动特性的理论和实验研究.  , 2006, 55(9): 4783-4788. doi: 10.7498/aps.55.4783
    [18] 周晓军, 杜 东, 龚俊杰. 偏振模耦合分布式光纤传感器空间分辨率研究.  , 2005, 54(5): 2106-2110. doi: 10.7498/aps.54.2106
    [19] 江 建, 饶云江, 周昌学, 朱 涛. 基于光放大的光纤Fizeau应变传感器频分复用系统.  , 2004, 53(7): 2221-2225. doi: 10.7498/aps.53.2221
    [20] 王义平, 饶云江, 冉曾令, 朱 涛. 高频CO2激光脉冲写入的长周期光纤光栅传感器的特性研究.  , 2003, 52(6): 1432-1437. doi: 10.7498/aps.52.1432
计量
  • 文章访问数:  398
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-04-22
  • 修回日期:  2025-06-03
  • 上网日期:  2025-06-18
  • 刊出日期:  2025-08-20

/

返回文章
返回
Baidu
map