搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于人工智能算法的宽稳区大模场纳秒激光产生

李晶宇 杨晶 王浩 李雪鹏 宁梓豪 高宏伟 王小军 赵天卓 樊仲维 许祖彦

引用本文:
Citation:

基于人工智能算法的宽稳区大模场纳秒激光产生

李晶宇, 杨晶, 王浩, 李雪鹏, 宁梓豪, 高宏伟, 王小军, 赵天卓, 樊仲维, 许祖彦

Generation of nano second laser with wide stable region and large mode field based on artificial intelligence algorithm

LI Jingyu, YANG Jing, WANG Hao, LI Xuepeng, NING Zihao, GAO Hongwei, WANG Xiaojun, ZHAO Tianzhuo, FAN Zhongwei, XU Zuyan
cstr: 32037.14.aps.74.20250519
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 本文基于人工智能算法提出了一种宽稳区大模场激光振荡器的优化设计方法. 通过构建谐振腔的光场传播模型, 设计了多目标优化函数, 并利用人工智能算法对腔段长度、透镜焦距及高斯镜选型多个维度进行全局优化. 在设定的热焦距范围内, 本文对模拟退火、粒子群优化和遗传算法等多种算法进行比对, 最终实现了复杂多维参数空间中最优解的高效搜索. 经过实验验证, 优化后的谐振腔在长度为540 mm的腔长范围内实现了100 Hz和190 mJ, 光束质量为$M_x^2$ = 2.1, $M_y^2$ = 1.9的7 ns脉宽的激光输出. 优化后的谐振腔热稳定曲线在大模场运转区间的斜率显著变缓, 有效扩大了谐振腔的热稳区, 从而保障了高重复频率激光器的稳定运行. 该研究有望为宽稳区大模场纳秒激光振荡器的设计提供参考.
    This study presents an optimization method of generating a wide stable-zone, large mode field operation nanosecond laser oscillator based on artificial intelligence algorithms. The work is motivated by the need of the large mode field laser cavities in compact size with variable thermal focal length. A physics model of light field propagation inside the resonator is established by combining thermal lensing tolerance. A multi-objective optimization function is designed to simultaneously balance the beam quality, thermal stability, and cavity compactness. Several algorithms, such as simulated annealing, particle swarm optimization, and genetic algorithms are compared, and ultimately, efficient searching for optimal solutions in complex multi-dimensional parameter spaces is achieved. In the system design, the parameters of cavity segment length, intracavity lens, and Gaussian mirror (VRM) are optimized. Therefore, an optimized cavity structure is experimentally implemented and Q-switching operations are perform. The results demonstrate stable laser output at 100 Hz repetition rate with 190 mJ pulse energy and 7 ns pulse width, and beam quality factors $ M_x^2 $ = 2.1 and $ M_y^2 $ = 1.9 respectively, and the total length of the cavity is only 540 mm, which demonstrates the compactness of laser design. Furthermore, numerical simulations are conducted to compare a variety of resonator configurations and assess the influence of different parameters on the cavity’s thermal stability. After the optimization, the thermal stability curve of the laser resonator shows a significant decrease in slope near the large-mode-field region, indicating an improvement in thermal length adaptability. This enhancement is crucial for ensuring long-term stable operation of high-repetition-rate nanosecond laser oscillators. In summary, this study provides an efficient approach for designing compact, thermally stable, large-mode-area resonators, and valuable insights into designing compact laser with high power output.
      通信作者: 杨晶, yangjing02@aircas.ac.cn
    • 基金项目: 国家重点研发计划(批准号: 2024YFB4608400, 2023YFF1303603)和广东省“璀璨行动”重大装备及应用项目(批准号: CC/ZN-202402ZJ0301)资助的课题.
      Corresponding author: YANG Jing, yangjing02@aircas.ac.cn
    • Funds: Project supported by the National Key Research and Development Program of China (Grant Nos. 2024YFB4608400, 2023YFF1303603) and the Major Equipment and Application Program of Guangdong Province, China (Grant No. CC/ZN-202402ZJ0301).
    [1]

    Zhu Z D, Lv S W, Zhang H Y, Hui Y L, Lei H, Li Q 2021 Opt. Express 29 32325Google Scholar

    [2]

    Li C Y, Lu C Q, Li C, Yang N, Li Y, Yang Z, Han S, Shi J F, Zhou Z W 2017 Opt. Commun. 394 1Google Scholar

    [3]

    Li C Y, Lu C Q, Li C, Zang Y N, Yang Z, Han S, Li Y, Yang N, Shi J F, Zhou Z W 2017 Opt. Commun. 56 116115Google Scholar

    [4]

    Fan Z W, Qiu J S, Kang Z J, Chen Y Z, Ge W Q, Tang X X 2017 Light-Sci. Appl. 6 e17004Google Scholar

    [5]

    Lu S W, Gao M, Yang Y, Zhu R, Hou X, Sun J F, Chen W B, Zhu X L 2019 Appl. Opt. 58 7517Google Scholar

    [6]

    Qi Y F, Zhu X L, Lou Q H, Ji J H, Dong J X, Wei R R 2007 J. Opt. Soc. Am. B-Opt. Phys. 24 1042Google Scholar

    [7]

    沈骁, 邹辉, 郑锐林, 郑加金, 韦玮 2015 64 024210Google Scholar

    Shen X, Zhou H, Zhen R L, Zhen J J, Wei W 2015 Acta Phys. Sin. 64 024210Google Scholar

    [8]

    周王哲, 李雪鹏, 杨晶, 杨天利, 王小军, 刘炳杰, 王浩竹, 杨俊波, 彭钦军 2023 72 014204Google Scholar

    Zhou W Z, Li X P, Yang J, Yang T L, Wang X J, Liu B J, Wang H Z, Yang J B, Peng Q J 2023 Acta Phys. Sin. 72 014204Google Scholar

    [9]

    Murdough M P, Denman C A 1996 Appl. Opt. 35 5925Google Scholar

    [10]

    Cerullo G, Desilvestri S, Magni V, Svelto O 1993 Opt. Quantum Electron. 25 489Google Scholar

    [11]

    薄勇, 耿爱丛, 毕勇, 孙志培, 杨晓东, 李瑞宁, 崔大复, 许祖彦 2006 55 1171Google Scholar

    Bo Y, Geng A C, Bi Y, Sun Z P, Yang X D, Li R N, Cui D F, Xu Z Y 2006 Acta Phys. Sin. 55 1171Google Scholar

    [12]

    何广源, 郭靖, 焦中兴, 王彪 2012 61 094217Google Scholar

    He G Y, Guo J, Jiao Z X, Wang B 2012 Acta Phys. Sin. 61 094217Google Scholar

    [13]

    Siegman A E 1974 Appl. Opt. 13 353Google Scholar

    [14]

    Liu Q, Liu J, Gong M 2011 Appl. Opt. 50 1186Google Scholar

    [15]

    韩昌昊, 穆宇, 罗辉, 韩隆, 方聪, 王思博, 魏磊 2024 激光与红外 54 179

    Han C H, Mu Y, Luo H, Han L, Fang C, Wang S B, Wei L 2024 Laser Infrared 54 179

    [16]

    Hauck R, Kortz H P, Weber H 1980 Appl. Opt. 19 598Google Scholar

    [17]

    Woodward R I, Kelleher E J R 2016 Sci. Rep. 6 37616Google Scholar

    [18]

    Fang Z W, Pu G Q, Xu Y X, Hu W S, Yi L L 2023 Opt. Express 31 41794Google Scholar

    [19]

    Shi H D, Fan R H, He C F, Wang J Y, Yang S, Xu M, Sun H Y, Li Y C, Fu Q 2024 Photonics 11 164Google Scholar

    [20]

    Liu Z C, Dang Z B, Liu Z X, Li Y, He X, Dai Y C, Chen Y X, Peng P, Fang Z Y 2023 Photonics Res. 11 695Google Scholar

    [21]

    王宁, 陆雨田, 孔勇 2004 中国激光 31 1317

    Wang N, Lu Y T, Kong Y 2004 Chin. J. Lasers 31 1317

    [22]

    Kirkpatrick S, Gelatt C, Vecchi M 1983 Science 220 671Google Scholar

    [23]

    赵知劲, 徐世宇, 郑仕链, 杨小牛 2009 58 5118Google Scholar

    Zhao Z J, Xu S Y, Zheng S L, Yang X N 2009 Acta Phys. Sin. 58 5118Google Scholar

    [24]

    Shapiro J 2001 Machine Learning and Its Applications: Advanced Lectures (Berlin, Heidelberg) 2001 pp146–168

    [25]

    Li X P, Yang J, Zhang M S, Yang T L, Wang X J, Peng Q J 2022 Chin. Phys. B 31 084207Google Scholar

  • 图 1  高斯镜非稳腔的优化示意图

    Fig. 1.  Optimization environment for Gaussian mirror unstable cavities.

    图 2  不同优化算法在迭代过程中的收敛曲线 (a) 模拟退火算法和粒子群优化算法; (b)遗传算法

    Fig. 2.  Convergence curves of different optimization algorithms: (a) Simulated annealing algorithm and particle swarm optimization algorithm; (b) genetic algorithm.

    图 3  基于遗传算法的谐振腔参数优化过程 (a)腔段长度$ {x_1} $随进化代数的变化; (b) 腔段长度${x_2}$随进化代数的变化; (c)腔段长度${x_3}$随进化代数的变化; (d)可调透镜焦距$f$的优化轨迹; (e) 光学参数组$({w_{\text{m}}}, {R_0}, {R_{\text{c}}})$选择随代数的演化, 算法在20代后趋于稳定, 最终选定参数组2 (${w_{\text{m}}} = 3{\mkern 1 mu} {\text{ mm}}, {R_{\text{c}}}{\text{ }} = - 1500{\mkern 1 mu} {\text{ mm}}, {R_0} = 0.3$).

    Fig. 3.  Optimization process of resonator parameters via genetic algorithm: (a) Evolution of cavity segment ${x_1}$; (b) evolution of cavity segment ${x_2}$; (c) evolution of cavity segment ${x_3}$; (d) optimization trajectory of adjustable lens focal length $f$; (e) selection of optical parameter groups $({w_{\text{m}}}, {R_0}, {R_{\text{c}}})$ across generations, the algorithm converges after 20 generations, ultimately selecting parameter group 2 (${w_{\text{m}}} = 3{\mkern 1 mu} {\text{ mm}}, {R_{\text{c}}}{\text{ }} = - 1500{\mkern 1 mu} {\text{ mm}}, {R_0} = 0.3$).

    图 4  实验装置示意图. M为高反射后镜, L为平凸透镜, TFP为1064 nm薄膜偏振片, QWP为1/4波片, LM为激光模块, OC为输出耦合镜

    Fig. 4.  Experimental setup. M represents high-reflectivity rear mirror, L represents plano-convex lens, TFP represents thin-film polarizer at 1064 nm, QWP represents quarter-wave plate, LM represents laser module, OC represents output coupler.

    图 5  谐振腔内各平面束宽半径分布. M为高反镜, L为透镜, LM为激光模块, OC为高斯耦合输出镜

    Fig. 5.  Beam radius distribution at different planes within the resonator. M represents high-reflection mirror, L represents lens, LM represents laser module, OC represents Gaussian mirror output coupler.

    图 6  (a)晶体中心位置基模光斑半径与热焦距的关系, 其中红虚线OC为非高斯镜, 蓝实线OC为高斯镜, I为传统热近非稳区, II为高斯镜非稳区; (b)不同耦合输出器下, 谐振腔模场半径$\omega $对焦距${f_{\text{t}}}$的导数变化趋势

    Fig. 6.  (a) Relationship between the fundamental mode beam radius at the crystal center and the thermal focal length, red dashed line OC as a non-Gaussian mirror, blue solid line OC as a Gaussian mirror, I represents traditional thermal near-unstable region, II represents Gaussian mirror unstable region; (b) the derivative of the resonator mode radius $\omega $ with respect to focal length ${f_{\text{t}}}$ under different output couplers.

    图 7  不同腔型的模式直径与最高输出功率关系图

    Fig. 7.  Mode diameter vs. maximum output power for different cavity types.

    图 8  (a) 输出能量与泵浦能量的关系及光光转换效率; (b) 输出稳定性在60 min内的测量结果

    Fig. 8.  (a) Output energy and O-O efficiency as a function of pump energy; (b) output stability measurement over 60 min.

    图 9  (a) 激光的典型脉冲列; (b) 单个脉冲的扩展轮廓

    Fig. 9.  (a) Typical pulse train of laser; (b) an expanded single pulse profile.

    图 10  典型的优化后 M2测量结果, 插图为相应的远场二维光束空间分布图

    Fig. 10.  Typical optimized M2 measurement results, with the corresponding far-field 2D beam spatial distribution shown in the inset.

    表 1  高斯镜规格参数

    Table 1.  Specifications of Gaussian mirrors.

    高斯镜
    编号N
    曲率半径
    Rc/mm
    中心反射率 膜斑半径
    ${\omega _{\text{m}}}$/mm
    1 –700 0.35 4
    2 –1500 0.3 3
    3 –2000 0.2 2
    下载: 导出CSV
    Baidu
  • [1]

    Zhu Z D, Lv S W, Zhang H Y, Hui Y L, Lei H, Li Q 2021 Opt. Express 29 32325Google Scholar

    [2]

    Li C Y, Lu C Q, Li C, Yang N, Li Y, Yang Z, Han S, Shi J F, Zhou Z W 2017 Opt. Commun. 394 1Google Scholar

    [3]

    Li C Y, Lu C Q, Li C, Zang Y N, Yang Z, Han S, Li Y, Yang N, Shi J F, Zhou Z W 2017 Opt. Commun. 56 116115Google Scholar

    [4]

    Fan Z W, Qiu J S, Kang Z J, Chen Y Z, Ge W Q, Tang X X 2017 Light-Sci. Appl. 6 e17004Google Scholar

    [5]

    Lu S W, Gao M, Yang Y, Zhu R, Hou X, Sun J F, Chen W B, Zhu X L 2019 Appl. Opt. 58 7517Google Scholar

    [6]

    Qi Y F, Zhu X L, Lou Q H, Ji J H, Dong J X, Wei R R 2007 J. Opt. Soc. Am. B-Opt. Phys. 24 1042Google Scholar

    [7]

    沈骁, 邹辉, 郑锐林, 郑加金, 韦玮 2015 64 024210Google Scholar

    Shen X, Zhou H, Zhen R L, Zhen J J, Wei W 2015 Acta Phys. Sin. 64 024210Google Scholar

    [8]

    周王哲, 李雪鹏, 杨晶, 杨天利, 王小军, 刘炳杰, 王浩竹, 杨俊波, 彭钦军 2023 72 014204Google Scholar

    Zhou W Z, Li X P, Yang J, Yang T L, Wang X J, Liu B J, Wang H Z, Yang J B, Peng Q J 2023 Acta Phys. Sin. 72 014204Google Scholar

    [9]

    Murdough M P, Denman C A 1996 Appl. Opt. 35 5925Google Scholar

    [10]

    Cerullo G, Desilvestri S, Magni V, Svelto O 1993 Opt. Quantum Electron. 25 489Google Scholar

    [11]

    薄勇, 耿爱丛, 毕勇, 孙志培, 杨晓东, 李瑞宁, 崔大复, 许祖彦 2006 55 1171Google Scholar

    Bo Y, Geng A C, Bi Y, Sun Z P, Yang X D, Li R N, Cui D F, Xu Z Y 2006 Acta Phys. Sin. 55 1171Google Scholar

    [12]

    何广源, 郭靖, 焦中兴, 王彪 2012 61 094217Google Scholar

    He G Y, Guo J, Jiao Z X, Wang B 2012 Acta Phys. Sin. 61 094217Google Scholar

    [13]

    Siegman A E 1974 Appl. Opt. 13 353Google Scholar

    [14]

    Liu Q, Liu J, Gong M 2011 Appl. Opt. 50 1186Google Scholar

    [15]

    韩昌昊, 穆宇, 罗辉, 韩隆, 方聪, 王思博, 魏磊 2024 激光与红外 54 179

    Han C H, Mu Y, Luo H, Han L, Fang C, Wang S B, Wei L 2024 Laser Infrared 54 179

    [16]

    Hauck R, Kortz H P, Weber H 1980 Appl. Opt. 19 598Google Scholar

    [17]

    Woodward R I, Kelleher E J R 2016 Sci. Rep. 6 37616Google Scholar

    [18]

    Fang Z W, Pu G Q, Xu Y X, Hu W S, Yi L L 2023 Opt. Express 31 41794Google Scholar

    [19]

    Shi H D, Fan R H, He C F, Wang J Y, Yang S, Xu M, Sun H Y, Li Y C, Fu Q 2024 Photonics 11 164Google Scholar

    [20]

    Liu Z C, Dang Z B, Liu Z X, Li Y, He X, Dai Y C, Chen Y X, Peng P, Fang Z Y 2023 Photonics Res. 11 695Google Scholar

    [21]

    王宁, 陆雨田, 孔勇 2004 中国激光 31 1317

    Wang N, Lu Y T, Kong Y 2004 Chin. J. Lasers 31 1317

    [22]

    Kirkpatrick S, Gelatt C, Vecchi M 1983 Science 220 671Google Scholar

    [23]

    赵知劲, 徐世宇, 郑仕链, 杨小牛 2009 58 5118Google Scholar

    Zhao Z J, Xu S Y, Zheng S L, Yang X N 2009 Acta Phys. Sin. 58 5118Google Scholar

    [24]

    Shapiro J 2001 Machine Learning and Its Applications: Advanced Lectures (Berlin, Heidelberg) 2001 pp146–168

    [25]

    Li X P, Yang J, Zhang M S, Yang T L, Wang X J, Peng Q J 2022 Chin. Phys. B 31 084207Google Scholar

  • [1] 吴思远, 李泓. 大语言模型在电池科研全流程应用的测评与无机固态电解质综合数据库构建.  , 2025, 74(16): 160701. doi: 10.7498/aps.74.20250572
    [2] 徐佳歆, 徐乐辰, 刘靖阳, 丁华建, 王琴. 人工智能赋能量子通信与量子传感系统.  , 2025, 74(12): 120301. doi: 10.7498/aps.74.20250322
    [3] 白靖宜, 黄桥高, 高鹏骋, 问昕, 褚勇. 基于去噪概率扩散模型的蝠鲼流场智能化预测.  , 2025, 74(10): 104701. doi: 10.7498/aps.74.20241499
    [4] 林基艳, 孙姣夏, 林书玉. 大尺寸三维超声振动系统的智能优化设计.  , 2024, 73(8): 084304. doi: 10.7498/aps.73.20240006
    [5] 潘新宇, 毕筱雪, 董政, 耿直, 徐晗, 张一, 董宇辉, 张承龙. 叠层相干衍射成像算法发展综述.  , 2023, 72(5): 054202. doi: 10.7498/aps.72.20221889
    [6] 侯晨阳, 孟凡超, 赵一鸣, 丁进敏, 赵小艇, 刘鸿维, 王鑫, 娄淑琴, 盛新志, 梁生. “机器微纳光学科学家”: 人工智能在微纳光学设计的应用与发展.  , 2023, 72(11): 114204. doi: 10.7498/aps.72.20230208
    [7] 周王哲, 李雪鹏, 杨晶, 杨天利, 王小军, 刘炳杰, 王浩竹, 杨俊波, 彭钦军. 大模场一维高阶厄米-高斯激光束产生.  , 2023, 72(1): 014204. doi: 10.7498/aps.72.20221422
    [8] 沈培鑫, 蒋文杰, 李炜康, 鲁智德, 邓东灵. 量子人工智能中的对抗学习.  , 2021, 70(14): 140302. doi: 10.7498/aps.70.20210789
    [9] 连天虹, 王石语, 寇科, 刘芸. 离轴抽运厄米-高斯模固体激光器.  , 2020, 69(11): 114202. doi: 10.7498/aps.69.20200086
    [10] 王晨阳, 段倩倩, 周凯, 姚静, 苏敏, 傅意超, 纪俊羊, 洪鑫, 刘雪芹, 汪志勇. 基于遗传算法优化卷积长短记忆混合神经网络模型的光伏发电功率预测.  , 2020, 69(10): 100701. doi: 10.7498/aps.69.20191935
    [11] 沈骁, 邹辉, 郑锐林, 郑加金, 韦玮. 增益导引-折射率反导引大模场光纤激光器抽运技术研究进展.  , 2015, 64(2): 024210. doi: 10.7498/aps.64.024210
    [12] 张琪, 曾文进, 夏瑞东. 有机激光材料及器件的研究现状与展望.  , 2015, 64(9): 094202. doi: 10.7498/aps.64.094202
    [13] 张驰, 胡明列, 宋有建, 张鑫, 柴路, 王清月. 自由耦合输出的大模场面积光子晶体光纤锁模激光器.  , 2009, 58(11): 7727-7734. doi: 10.7498/aps.58.7727
    [14] 贺万骏, 姚宝权, 王月珠, 鞠有伦. 二极管端面抽运的固体激光放大器自身热透镜焦距测量.  , 2007, 56(6): 3240-3245. doi: 10.7498/aps.56.3240
    [15] 席再军, 郑启光, 秦应雄, 余本海, 童杏林. 多棒串接固体激光器谐振腔的研究.  , 2003, 52(6): 1396-1402. doi: 10.7498/aps.52.1396
    [16] 尚连聚. 端面抽运固体激光器的腔模匹配分析.  , 2003, 52(6): 1408-1411. doi: 10.7498/aps.52.1408
    [17] 尚连聚. 激光二极管端面抽运的1.34μm Nd:YVO4平凹腔型激光器.  , 2003, 52(10): 2476-2480. doi: 10.7498/aps.52.2476
    [18] 程继新, 史强, 双丰, 朱清时. 多色强激光场与分子耦合制备长寿命局域模振动.  , 1997, 46(6): 1079-1087. doi: 10.7498/aps.46.1079
    [19] 朱振和. 脉冲主被动锁模固体激光器的理论计算(Ⅰ)——理论模型.  , 1985, 34(5): 603-610. doi: 10.7498/aps.34.603
    [20] 朱振和. 脉冲主被动锁模固体激光器的理论计算(Ⅱ)——计算机模拟.  , 1985, 34(5): 611-621. doi: 10.7498/aps.34.611
计量
  • 文章访问数:  398
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-04-22
  • 修回日期:  2025-06-06
  • 上网日期:  2025-06-11
  • 刊出日期:  2025-08-20

/

返回文章
返回
Baidu
map