搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

MoS2莫尔超晶格的层间电导特性

吴奖承 殷玉婷 方贺男

引用本文:
Citation:

MoS2莫尔超晶格的层间电导特性

吴奖承, 殷玉婷, 方贺男

Interlayer conductance of MoS2 moiré superlattices

WU Jiangcheng, YIN Yuting, FANG Henan
cstr: 32037.14.aps.74.20250434
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 作为二维半导体过渡金属硫族化物中的典型代表性材料, MoS2具有带隙可调谐特性等优异物理特性. 因此, MoS2莫尔超晶格是研究凝聚态电子输运问题和设计光电器件的理想体系. 另一方面, 层间电导的测量是研究莫尔超晶格层间耦合作用的重要手段. 为了阐明带隙可调谐等特性对莫尔超晶格层间电导的影响, 有必要对MoS2莫尔超晶格的层间电导特性加以研究. 本文利用衍射物理中的光学方法, 构建了MoS2莫尔超晶格体系的隧穿理论. 在该理论中, 将MoS2莫尔超晶格中电子的隧穿视作电子波为周期性光栅所散射. 利用该理论研究了MoS2莫尔超晶格的层间电导特性. 研究结果表明: 由于衍射效应, 界面处隧穿电子波存在两个分波均与界面势产生共振, 所以层间电导随扭转角的变化呈现双峰结构. 进一步还研究了隧穿层和金属电极对层间电导的影响: 上层和下层MoS2晶格厚度分别影响层间电导的峰和背景; 界面势强度的增大可以增强隧穿电子的相干性; 金属电极化学势主要影响MoS2莫尔超晶格层间电导峰的特性, 且相比于石墨莫尔超晶格, 影响更为显著.
    MoS2, as a typical material of two-dimensional semiconductor transition metal chalcogenides, has excellent physical properties such as tunable band gap. Therefore, MoS2 moiré superlattice is an ideal system for investigating the electron transport in condensed matter and the design of optoelectronic devices. On the other hand, interlayer conductance serves as a significant indicator for analyzing coupling effects in moiré superlattice. Here, in order to clarify the influence of tunable band gap on the interlayer conductance, we develop a tunneling theory for calculating the interlayer conductance of MoS2 moiré superlattices by using optical methods in diffraction physics. In this theory, the electron tunneling can be considered as the diffraction of electron waves by the periodic gratings. Accordingly, the influences of the periodicity of MoS2 moiré superlattices and the coherence of the tunneling electrons can be well included in the theory. In addition, the effect of the tunable band gap of MoS2 is taken into account. According to the theory, we investigate the properties of the interlayer conductance of MoS2 moiré superlattice. The theoretical results show that due to the diffraction effect, there exist two partial waves of the tunneling electron at the interface, which can resonate with the interface potential. Accordingly, the interlayer conductance curves exhibit a double-peak structure. Furthermore, we analyze the influences of the tunneling layer and the metal electrodes on the interlayer conductance: the thickness of the upper MoS2 lattice affects the peak and the lower one primarily influences the background. The coherence of tunneling electrons will be enhanced when the parameter of interface potential strength increases. The chemical potential of the metal electrode mainly affects the properties of the peak, and the influence is more significant than that in graphite moiré superlattice.
      通信作者: 方贺男, fanghn@njupt.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11704197)和南京邮电大学校级自然科学基金(批准号: NY223074)资助的课题.
      Corresponding author: FANG Henan, fanghn@njupt.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11704197) and the National Science Foundation of Nanjing University of Posts and Telecommunications, China (Grant No. NY223074).
    [1]

    Cao Y, Fatemi V, Fang S, Watanabe K, Taniguchi T, Kaxiras E, Jarillo-Herrero P 2018 Nature 556 43Google Scholar

    [2]

    Naik M H, Jain M 2018 Phys. Rev. Lett. 121 266401Google Scholar

    [3]

    李听昕 2022 71 127309Google Scholar

    Li T X 2022 Acta Phys. Sin. 71 127309Google Scholar

    [4]

    Seyler K L, Rivera P, Yu H, Wilson N P, Ray E L, Mandrus D G, Yan J, Yao W, Xu X 2019 Nature 567 66Google Scholar

    [5]

    Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N, Strano M S 2012 Nat. Nanotechnol. 7 699Google Scholar

    [6]

    Tran K, Moody G, Wu F, Lu X, Choi J, Kim K, Rai A, Sanchez D A, Quan J, Singh A, Embley J, Zepeda A, Campbell M, Autry T, Taniguchi T, Watanabe K, Lu N, Banerjee S K, Silverman K L, Kim S, Tutuc E, Yang L, MacDonald A H, Li X 2019 Nature 567 71Google Scholar

    [7]

    Mak K F, Lee C, Hone J, Shan J, Heinz T F 2010 Phys. Rev. Lett. 105 136805Google Scholar

    [8]

    Radisavljevic B, Radenovic A, Brivio J, Giacometti V, Kis A 2011 Nat. Nanotechnol. 6 147Google Scholar

    [9]

    Splendiani A, Sun L, Zhang Y, Li T, Kim J, Chim C Y, Galli G, Wang F 2010 Nano Lett. 10 1271Google Scholar

    [10]

    Liu K, Zhang L, Cao T, Jin C, Qiu D, Zhou Q, Zettl A, Yang P, Louie S G, Wang F 2014 Nat. Commun. 5 4966Google Scholar

    [11]

    Liao M, Wei Z, Du L, Wang Q, Tang J, Yu H, Wu F, Zhao J, Xu X, Han B, Liu K, Gao P, Polcar T, Sun Z, Shi D, Yang R, Zhang G 2020 Nat. Commun. 11 2153Google Scholar

    [12]

    Xu M, Ji H, Zheng L, Li W, Wang J, Wang H, Luo L, Lu Q, Gan X, Liu Z, Wang X, Huang W 2024 Nat. Commun. 15 562Google Scholar

    [13]

    Zhou J, Huang H, Zhao Z, Dou Z, Zhou L, Zhang T, Huang Z, Feng Y, Shi D, Liu N, Yang J, Nie J C, Wang Q, Dong J, Liu Y, Dou R, Xue Q 2024 Adv. Mater. 36 2408227Google Scholar

    [14]

    Garcia-Ruiz A, Liu M H 2024 Nano Lett. 24 16317Google Scholar

    [15]

    Yang M M, Cong R D, Wu C L, Zhang Y, Gao Q, Hu X W, Zhang Y F, Tan L, Liang B L, Zhao X H, Li X L 2024 Surf. Interfaces 52 104790Google Scholar

    [16]

    Li H, Wei X, Wu G, Gao S, Chen Q, Peng L M 2018 Ultramicroscopy 193 90Google Scholar

    [17]

    Koren E, Leven I, Lörtscher E, Knoll A, Hod O, Duerig U 2016 Nat. Nanotechnol. 11 752Google Scholar

    [18]

    Chari T, Ribeiro-Palau R, Dean C R, Shepard K 2016 Nano Lett. 16 4477Google Scholar

    [19]

    Yu Z, Song A, Sun L, Li Y, Gao L, Peng H, Ma T, Liu Z, Luo J 2020 Small 16 1902844Google Scholar

    [20]

    Zhang S, Song A, Chen L, Jiang C, Chen C, Gao L, Hou Y, Liu L, Ma T, Wang H, Feng X Q, Li Q 2020 Sci. Adv. 6 eabc5555Google Scholar

    [21]

    Inbar A, Birkbeck J, Xiao J, Taniguchi T, Watanabe K, Yan B, Oreg Y, Stern A, Berg E, Ilani S 2023 Nature 614 682Google Scholar

    [22]

    Birkbeck J, Xiao J, Inbar A, Taniguchi T, Watanabe K, Berg E, Glazman L, Guinea F, Von Oppen F, Ilani S 2025 Nature 641 345Google Scholar

    [23]

    Fang H, Xiao M 2021 ACS Appl. Electron. Mater. 3 2543Google Scholar

    [24]

    Tao Y Z, Liu C, Xiao M W, Fang H N 2024 Chin. Phys. B 33 107301Google Scholar

    [25]

    Liao M, Wu Z W, Du L, Zhang T, Wei Z, Zhu J, Yu H, Tang J, Gu L, Xing Y 2018 Nat. Commun. 9 4068Google Scholar

    [26]

    Molinàs-Mata P 1996 Phys. Rev. A 54 2060Google Scholar

    [27]

    Kočinac S L S, Milanović V 2008 Phys. Lett. A 372 191Google Scholar

    [28]

    Kittle C 2005 Introduction of Solid State Physics (New York: John Wiley & Sons, Inc) p229

    [29]

    Cowley J M 1995 Diffraction Physics (Amsterdam: Elsevier) p177

    [30]

    Fang H, Xiao M, Rui W, Du J, Tao Z 2016 Sci. Rep. 6 24300Google Scholar

    [31]

    Ataca C, Ciraci S 2011 J. Phys. Chem. C 115 13303Google Scholar

    [32]

    Zhang G, Huang S, Chaves A, Song C, Özçelik V O, Low T, Yan H 2017 Nat. Commun. 8 14071Google Scholar

  • 图 1  (a) MoS2莫尔超晶格体系示意图; (b) MoS2莫尔超晶格的俯视图

    Fig. 1.  (a) Schematic illustration of MoS2 moiré superlattices; (b) top view of MoS2 moiré superlattices.

    图 2  不同上层厚度下关于扭转角的层间电导曲线, 内插图为d1 = 2.60 nm时电导峰的放大图

    Fig. 2.  Interlayer conductance curves versus twist angle under different d1, and the inset is the enlarged figure of the peak of d1 = 2.60 nm.

    图 3  (a)不同下层厚度下关于扭转角的层间电导曲线; (b)当扭转角α分别为0°和10°时层间电导背景随下层厚度的变化曲线, 其中对应于整数层厚度的数据点为空心符号所标注

    Fig. 3.  (a) Interlayer conductance curves versus twist angle under different d2; (b) the background as a function of d2 under different twist angles, and the data corresponding to the discrete layers are marked with open symbols.

    图 4  不同界面势强度参数下关于扭转角的层间电导曲线, 内插图为γ0 = 4×10–29 J·m和γ0 = 5×10–29 J·m时电导峰的放大图

    Fig. 4.  Interlayer conductance curves versus twist angle under different γ0, and the inset is the enlarged figure of the peaks of γ0 = 4×10–29 J·m and γ0 = 5×10–29 J·m.

    图 5  不同化学势μ下关于扭转角的层间电导曲线

    Fig. 5.  Interlayer conductance curves versus twist angle under different μ.

    Baidu
  • [1]

    Cao Y, Fatemi V, Fang S, Watanabe K, Taniguchi T, Kaxiras E, Jarillo-Herrero P 2018 Nature 556 43Google Scholar

    [2]

    Naik M H, Jain M 2018 Phys. Rev. Lett. 121 266401Google Scholar

    [3]

    李听昕 2022 71 127309Google Scholar

    Li T X 2022 Acta Phys. Sin. 71 127309Google Scholar

    [4]

    Seyler K L, Rivera P, Yu H, Wilson N P, Ray E L, Mandrus D G, Yan J, Yao W, Xu X 2019 Nature 567 66Google Scholar

    [5]

    Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N, Strano M S 2012 Nat. Nanotechnol. 7 699Google Scholar

    [6]

    Tran K, Moody G, Wu F, Lu X, Choi J, Kim K, Rai A, Sanchez D A, Quan J, Singh A, Embley J, Zepeda A, Campbell M, Autry T, Taniguchi T, Watanabe K, Lu N, Banerjee S K, Silverman K L, Kim S, Tutuc E, Yang L, MacDonald A H, Li X 2019 Nature 567 71Google Scholar

    [7]

    Mak K F, Lee C, Hone J, Shan J, Heinz T F 2010 Phys. Rev. Lett. 105 136805Google Scholar

    [8]

    Radisavljevic B, Radenovic A, Brivio J, Giacometti V, Kis A 2011 Nat. Nanotechnol. 6 147Google Scholar

    [9]

    Splendiani A, Sun L, Zhang Y, Li T, Kim J, Chim C Y, Galli G, Wang F 2010 Nano Lett. 10 1271Google Scholar

    [10]

    Liu K, Zhang L, Cao T, Jin C, Qiu D, Zhou Q, Zettl A, Yang P, Louie S G, Wang F 2014 Nat. Commun. 5 4966Google Scholar

    [11]

    Liao M, Wei Z, Du L, Wang Q, Tang J, Yu H, Wu F, Zhao J, Xu X, Han B, Liu K, Gao P, Polcar T, Sun Z, Shi D, Yang R, Zhang G 2020 Nat. Commun. 11 2153Google Scholar

    [12]

    Xu M, Ji H, Zheng L, Li W, Wang J, Wang H, Luo L, Lu Q, Gan X, Liu Z, Wang X, Huang W 2024 Nat. Commun. 15 562Google Scholar

    [13]

    Zhou J, Huang H, Zhao Z, Dou Z, Zhou L, Zhang T, Huang Z, Feng Y, Shi D, Liu N, Yang J, Nie J C, Wang Q, Dong J, Liu Y, Dou R, Xue Q 2024 Adv. Mater. 36 2408227Google Scholar

    [14]

    Garcia-Ruiz A, Liu M H 2024 Nano Lett. 24 16317Google Scholar

    [15]

    Yang M M, Cong R D, Wu C L, Zhang Y, Gao Q, Hu X W, Zhang Y F, Tan L, Liang B L, Zhao X H, Li X L 2024 Surf. Interfaces 52 104790Google Scholar

    [16]

    Li H, Wei X, Wu G, Gao S, Chen Q, Peng L M 2018 Ultramicroscopy 193 90Google Scholar

    [17]

    Koren E, Leven I, Lörtscher E, Knoll A, Hod O, Duerig U 2016 Nat. Nanotechnol. 11 752Google Scholar

    [18]

    Chari T, Ribeiro-Palau R, Dean C R, Shepard K 2016 Nano Lett. 16 4477Google Scholar

    [19]

    Yu Z, Song A, Sun L, Li Y, Gao L, Peng H, Ma T, Liu Z, Luo J 2020 Small 16 1902844Google Scholar

    [20]

    Zhang S, Song A, Chen L, Jiang C, Chen C, Gao L, Hou Y, Liu L, Ma T, Wang H, Feng X Q, Li Q 2020 Sci. Adv. 6 eabc5555Google Scholar

    [21]

    Inbar A, Birkbeck J, Xiao J, Taniguchi T, Watanabe K, Yan B, Oreg Y, Stern A, Berg E, Ilani S 2023 Nature 614 682Google Scholar

    [22]

    Birkbeck J, Xiao J, Inbar A, Taniguchi T, Watanabe K, Berg E, Glazman L, Guinea F, Von Oppen F, Ilani S 2025 Nature 641 345Google Scholar

    [23]

    Fang H, Xiao M 2021 ACS Appl. Electron. Mater. 3 2543Google Scholar

    [24]

    Tao Y Z, Liu C, Xiao M W, Fang H N 2024 Chin. Phys. B 33 107301Google Scholar

    [25]

    Liao M, Wu Z W, Du L, Zhang T, Wei Z, Zhu J, Yu H, Tang J, Gu L, Xing Y 2018 Nat. Commun. 9 4068Google Scholar

    [26]

    Molinàs-Mata P 1996 Phys. Rev. A 54 2060Google Scholar

    [27]

    Kočinac S L S, Milanović V 2008 Phys. Lett. A 372 191Google Scholar

    [28]

    Kittle C 2005 Introduction of Solid State Physics (New York: John Wiley & Sons, Inc) p229

    [29]

    Cowley J M 1995 Diffraction Physics (Amsterdam: Elsevier) p177

    [30]

    Fang H, Xiao M, Rui W, Du J, Tao Z 2016 Sci. Rep. 6 24300Google Scholar

    [31]

    Ataca C, Ciraci S 2011 J. Phys. Chem. C 115 13303Google Scholar

    [32]

    Zhang G, Huang S, Chaves A, Song C, Özçelik V O, Low T, Yan H 2017 Nat. Commun. 8 14071Google Scholar

  • [1] 刘恩克. 磁序与拓扑的耦合: 从基础物理到拓扑磁电子学.  , 2024, 73(1): 017103. doi: 10.7498/aps.73.20231711
    [2] 黄雪飞, 苏杰, 廖健颖, 李盈傧, 黄诚. 反向旋转双色椭偏场中原子隧穿电离电子的全息干涉.  , 2022, 71(9): 093202. doi: 10.7498/aps.71.20212226
    [3] 李婷, 汪涛, 王叶兵, 卢本全, 卢晓同, 尹默娟, 常宏. 浅光晶格中量子隧穿现象的实验观测.  , 2022, 71(7): 073701. doi: 10.7498/aps.71.20212038
    [4] 面向类脑计算的物理电子学专题编者按.  , 2022, 71(14): 140101. doi: 10.7498/aps.71.140101
    [5] 陈玉, 陈家麟, 查国桥, 周世平. 石墨烯铁磁-绝缘层-超导结的输运.  , 2014, 63(17): 177402. doi: 10.7498/aps.63.177402
    [6] 李春雷, 徐燕, 张燕翔, 叶宝生. 双量子阱中光子辅助电子自旋隧穿.  , 2013, 62(10): 107301. doi: 10.7498/aps.62.107301
    [7] 刘江涛, 黄接辉, 肖文波, 胡爱荣, 王建辉. 栅极电势对强光场下石墨烯场效应管中电子隧穿的影响.  , 2012, 61(17): 177202. doi: 10.7498/aps.61.177202
    [8] 王文元, 蒙红娟, 杨阳, 祁鹏堂, 马云云, 马莹, 段文山. 费米超流气体的非线性Landau-Zener 隧穿.  , 2012, 61(8): 087302. doi: 10.7498/aps.61.087302
    [9] 蒙红娟, 杨阳, 王文元, 祁鹏堂, 马云云, 马莹, 王善进, 段文山. 费米超流气体的非线性Rosen-Zener隧穿.  , 2012, 61(6): 060303. doi: 10.7498/aps.61.060303
    [10] 罗小光, 何济洲. 摇摆型棘齿热电子隧穿制冷.  , 2011, 60(9): 090506. doi: 10.7498/aps.60.090506
    [11] 王沙, 杨志安. 二维周期光子晶格中的非线性Landau-Zener隧穿.  , 2009, 58(2): 729-733. doi: 10.7498/aps.58.729
    [12] 王沙, 杨志安. 光子晶格中光束演化的二能级模型及非线性Landau-Zener隧穿.  , 2009, 58(6): 3699-3706. doi: 10.7498/aps.58.3699
    [13] 林峰, 李缵轶, 王山鹰. TiO2纳米管的力学和电子学性质.  , 2009, 58(12): 8544-8548. doi: 10.7498/aps.58.8544
    [14] 金莲, 朱林, 李玲, 谢征微. 多层结构双自旋过滤隧道结中的电子输运特性.  , 2009, 58(12): 8577-8583. doi: 10.7498/aps.58.8577
    [15] 朱 林, 陈卫东, 谢征微, 李伯臧. NM/FI/NI/FI/NM新型双自旋过滤隧道结的隧穿电导和隧穿磁电阻.  , 2006, 55(10): 5499-5505. doi: 10.7498/aps.55.5499
    [16] 吴卓杰, 朱卡的, 袁晓忠, 郑 杭. 电声子相互作用对量子点分子中单电子隧穿的影响.  , 2005, 54(7): 3346-3350. doi: 10.7498/aps.54.3346
    [17] 王茂祥, 孙承休, 史晓春, 俞建华. 双势垒结构Cu-Al2O3-MgF2-Au隧道结中的电子共振隧穿与发光特性研究.  , 1999, 48(2): 326-331. doi: 10.7498/aps.48.326
    [18] 俞建华, 孙承休, 王茂祥, 张佑文, 魏同立. 金属-绝缘体-金属隧道发光结的电子隧穿和负阻现象.  , 1998, 47(2): 300-306. doi: 10.7498/aps.47.300
    [19] 潘少华, 冯思民, 崔大复, 杨国桢. 隧穿展宽对超晶格子带间光吸收饱和的影响.  , 1993, 42(7): 1074-1079. doi: 10.7498/aps.42.1074-2
    [20] 潘少华;冯思民;崔大复;杨国祯. 隧穿展宽对超晶格子带间光吸收饱和的影响.  , 1991, 40(7): 1074-1079. doi: 10.7498/aps.40.1074
计量
  • 文章访问数:  405
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-04-03
  • 修回日期:  2025-06-08
  • 上网日期:  2025-06-19
  • 刊出日期:  2025-08-20

/

返回文章
返回
Baidu
map