-
近年来, 镍氧化物超导电性备受关注, 全球多个科研团队在常压和高压条件下, 发现了多种镍氧化物材料的超导电性. 来自中国和美国的研究团队通过独立、相异的研究路径, 发现了常压下双层Ruddlesden-Popper结构镍氧化物薄膜的高温超导电性, 为深入研究高温超导机理提供了全新的平台. 中国团队基于自主发展的“强氧化原子逐层外延”技术, 制备出具有原子级平滑表面的纯相双层结构镍氧化物超导薄膜. 通过原位强氧化处理技术, 可在原子级平整的薄膜表面开展ARPES等表面敏感测量, 揭示超导相的电子结构特征, 为超导微观机理的深入研究提供关键实验基础. 通过协同开展晶格结构设计、稀土/碱土元素替代以及界面应力工程调控, 有望进一步提升该体系的超导转变温度.In recent years, significant progress has been made in the superconductivity of nickelates, with global teams discovering various nickelate superconductors under ambient and high pressure conditions. Research teams in China and USA have independently discovered ambient-pressure superconductivity in Ruddlesden-Popper bilayer nickelate thin films through different technical pathways, establishing a novel platform for probing high-temperature superconducting mechanisms. The Chinese teams have synthesized pure-phase bilayer nickelate films with atomically smooth surfaces by using their proprietary Gigantic-Oxidative Atomic-Layer-by-Layer Epitaxy (GOALL-Epitaxy) technique. After in situ strong oxidation processing of surface, surface-sensitive measurements, such as ARPES, can be conducted on these atomically flat films to reveal the electronic structure of the superconducting phase, and further in-depth experimental research on superconducting mechanisms is expected. Through synergistic efforts in lattice engineering, rare-earth/alkaline-earth element substitution, and interface strain engineering, this system has the potential to achieve higher superconducting transition temperatures.
-
Keywords:
- high-temperature superconductivity /
- nickelate thin film /
- gigantic-oxidative atomic-layer-by-layer epitaxy
[1] Kamerlingh Onnes H 1991 Through Measurement to Knowledge: The Selected Papers of Heike Kamerlingh Onnes 1853–1926 (Dordrecht: Springer Netherlands) p267
[2] Bardeen J, Cooper L, Schrieffer J 1957 Phys. Rev. 108 1175
Google Scholar
[3] McMillan W 1968 Phys. Rev. 167 331
Google Scholar
[4] Bednorz J, Müller K 1986 Z. Phys. B Cond. Matter 64 189
Google Scholar
[5] Uchida S, Takagi H, Kitazawa K, Tanaka S 1987 Jpn. J. Appl. Phys. 26 L1
Google Scholar
[6] 赵忠贤, 陈立泉, 杨乾声, 黄玉珍, 陈赓华, 唐汝明, 刘贵荣, 崔长庚, 陈烈, 王连忠, 郭树权, 李山林, 毕建清 1987 科学通报 32 412
Google Scholar
Zhao Z X, Chen L Q, Yang Q S, Huang Y Z, Chen G H, Tang R M, Liu G R, Cui C G, Chen L, Wang L Z, Guo S Q, Li S L, Bi J Q 1987 Chin. Sci. Bull. 32 412
Google Scholar
[7] Wu M K, Ashburn J, Torng C J, Hor P H, Meng R L, Gao L, Huang Z J, Wang Y Q, Chu C W 1987 Phys. Rev. Lett. 58 908
Google Scholar
[8] Kamihara Y, Hiramatsu H, Hirano M, Kawamura R, Yanagi H, Kamiya T, Hosono H 2006 J. Am. Chem. Soc. 128 10012
Google Scholar
[9] Kamihara Y, Watanabe T, Hirano M, Hosono H 2008 J. Am. Chem. Soc. 130 3296
Google Scholar
[10] Chen X H, Wu T, Wu G, Liu R H, Chen H, Fang D F 2008 Nature 453 761
Google Scholar
[11] Chen G F, Li Z, Wu D, Li G, Hu W Z, Dong J, Zheng P, Luo J L, Wang N L 2008 Phys. Rev. Lett. 100 247002
Google Scholar
[12] Ren Z A, Lu W, Yang J, Yi W, Shen X L, Zheng C, Che G C, Dong X L, Sun L L, Zhou F, Zhao Z X 2008 Chin. Phys. Lett. 25 2215
Google Scholar
[13] Wang Q Y, Li Z, Zhang W H, Zhang Z C, Zhang J S, Li W, Ding H, Ou Y B, Deng P, Chang K, Wen J, Song C L, He K, Jia J F, Ji S H, Wang Y Y, Wang L L, Chen X, Ma X C, Xue Q K 2012 Chin. Phys. Lett. 29 037402
Google Scholar
[14] Li D F, Lee K, Wang B Y, Osada M, Crossley S, Lee H R, Cui Y, Hikita Y, Hwang H Y 2019 Nature 572 624
Google Scholar
[15] Sun H L, Huo M W, Hu X W, Li J Y, Liu Z J, Han Y F, Tang L Y, Mao Q Z, Yang P T, Wang B S, Cheng J G, Yao D X, Zhang G M, Wang M 2023 Nature 621 493
Google Scholar
[16] Zhang Y N, Su D J, Huang Y N, Shan Z Y, Sun H L, Huo M W, Ye K X, Zhang J W, Yang Z H, Xu Y K, Su Y, Li R, Smidman M, Wang M, Jiao L, Yuan H Q 2024 Nat. Phys. 20 1269
Google Scholar
[17] Wang N N, Wang G, Shen X L, Hou J, Luo J, Ma X P, Yang H X, Shi L F, Dou J, Feng J, Yang J, Shi Y Q, Ren Z A, Ma H M, Yang P T, Liu Z Y, Liu Y, Zhang H, Dong X L, Wang Y X, Jiang K, Hu J P, Nagasaki S, Kitagawa K, Calder S, Yan J Q, Sun J P, Wang B S, Zhou R, Uwatoko Y, Cheng J G 2024 Nature 634 579
Google Scholar
[18] Zhu Y H, Peng D, Zhang E K, Pan B Y, Chen X, Chen L X, Ren H F, Liu F Y, Hao Y Q, Li N N, Xing Z F, Lan F J, Han J Y, Wang J J, Jia D H, Wo H L, Gu Y Q, Gu Y Q, Ji L, Wang W B, Gou H Y, Shen Y, Ying T Q, Chen X L, Yang W G, Cao H B, Zheng C L, Zeng Q S, Guo J G, Zhao J 2024 Nature 631 531
Google Scholar
[19] Lee J H, Luo G, Tung I C, Chang S H, Luo Z, Malshe M, Gadre M, Bhattacharya A, Nakhmanson S M, Eastman J A, Hong H, Jellinek J, Morgan D, Fong D D, Freeland J W 2014 Nat. Mater. 13 879
Google Scholar
[20] Lei Q Y, Golalikhani M, Davidson B, Liu G Z, Schlom D G, Qiao Q, Zhu Y M, Chandrasena R, Yang W B, Gray A X, Arenholz E, Farrar A K, Tenne D, Hu M H, Guo J D, Singh R, Xi X X 2017 npj Quant. Mater. 2 10
Google Scholar
[21] Zhou X R, Zhang X W, Yi J B, Qin P X, Feng Z X, Jiang P H, Zhong Z C, Yan H, Wang X N, Chen H Y, Wu H J, Zhang X, Meng Z A, Yu X J, Breese M B H, Cao J F, Wang J M, Jiang C B, Liu Z Q 2022 Adv. Mater. 34 2106117
Google Scholar
[22] Pan G A, Song Q, Segedin D, Jung M C, El-Sherif H, Fleck E, Goodge B, Doyle S, Carrizales D, N’Diaye A, Shafer P, Paik H, Kourkoutis L, Baggari I, Botana A, Brooks C, Mundy J 2022 Phys. Rev. Mater. 6 055003
Google Scholar
[23] Gao X F, Liu J H, Ji Y Y, Wei L, Xiao W, Hu S L, Li L, Gan Y L, Chen K, Liao Z L 2023 APL Mater. 11 111109
Google Scholar
[24] Wei W Z, Vu D, Zhang Z, Walker F J, Ahn C H 2023 Sci. Adv. 9 eadh3327
Google Scholar
[25] Aggarwal L, Božović I 2024 Materials 17 2546
Google Scholar
[26] Ding X, Fan Y, Wang X X, Li C H, An Z T, Ye J H, Tang S L, Lei M Y N, Sun X T, Guo N, Chen Z H, Sangphet S, Wang Y L, Xu H C, Peng R, Feng D L 2024 Nat. Sci. Rev. 11 nwae194
Google Scholar
[27] Cui T, Choi S, Lin T, Liu C, Wang G, Wang N N, Chen S R, Hong H T, Rong D K, Wang Q Y, Jin Q, Wang J O, Gu L, Ge C, Wang C, Cheng J G, Zhang Q H, Si L, Jin K J, Guo E J 2024 Commun. Mater. 5 32
Google Scholar
[28] Liu Y C, Ou M J, Chu H F, Yang H, Li Q, Zhang Y J, Wen H H 2024 Phys. Rev. Mater. 8 124801
Google Scholar
[29] Ren X L, Sutarto R, Wu X X, Zhang J F, Huang H, Xiang T, Hu J P, Comin R, Zhou X J, Zhu Z H 2025 Commun. Phys. 8 52
Google Scholar
[30] Chow S L E, Luo Z Y, Ariando A 2025 Nature DOI: 10.1038/s41586-025-08893-4
[31] Liu Y C, Ou M J, Wang Y, Wen H H 2024 arXiv. 2411.16047 [cond-mat. supr-con]
[32] Huo M W, Ma P Y, Huang C X, Huang X, Sun H L, Wang M 2025 arXiv: 2501.15929 [cond-mat. supr-con]
[33] Zhong H Y, Hao B, Wei Y, Zhang Z J, Liu R X, Huang X R, Ni X S, Cantarino M, Cao K, Nie Y F, Schmitt T, Lu X Y 2025 arXiv: 2502.03178 [cond-mat. supr-con]
[34] Xu M Y, Qiu D, Xu M H, Guo Y H, Shen C, Yang C, Sun W J, Nie Y F, Li Z X, Xiang T, Qiao L, Xiong J, Li Y R 2025 arXiv: 2502.14633 [cond-mat. supr-con]
[35] Yang M W, Wang H, Tang J Y, Luo J P, Wu X F, Mao R L, Xu W J, Zhou G D, Dong Z G, Feng B H, Shi L C, Pei Z C, Gao P, Chen Z Y, Li D F 2025 arXiv: 2503.18346 [cond-mat. supr-con]
[36] Zhou G D, Huang H L, Wang F Z, Wang H, Yang Q S, Nie Z H, Lv W, Ding C, Li Y Y, Lin J Y, Yue C M, Li D F, Sun Y J, Lin J H, Zhang G M, Xue Q K, Chen Z Y 2025 Nat. Sci. Rev. 12 nwae429
Google Scholar
[37] Ko E K, Yu Y J, Liu Y D, Bhatt L, Li J R, Thampy V, Kuo C T, Wang B Y, Lee Y, Lee K, Lee J, Goodge B H, Muller D A, Hwang H Y 2025 Nature 638 935
Google Scholar
[38] Zhou G D, Lv W, Wang H, Nie Z H, Chen Y Q, Li Y Y, Huang H L, Chen W Q, Sun Y J, Xue Q K, Chen Z Y 2025 Nature 640 641
Google Scholar
[39] Kanai M, Kawai T, Kawai S, Tabata H 1989 Appl. Phys. Lett. 54 1802
Google Scholar
[40] Kanai M, Kawai T, Kawai S 1991 Appl. Phys. Lett. 58 771
Google Scholar
[41] Dong Z H, Huo M W, Li J, Li J Y, Li P C, Sun H L, Gu L, Lu Y, Wang M, Wang Y Y, Chen Z 2024 Nature 630 847
Google Scholar
[42] Liu Y D, Ko E K, Tarn Y J, Bhatt L, Goodge B H, Muller D A, Raghu S, Yu Y J, Hwang H Y 2025 arXiv: 2501.08022 [cond-mat. supr-con]
[43] Wang H, Huang H L, Zhou G D, Lv W, Yue C M, Xu L Z, Wu X F, Nie Z H, Chen Y Q, Sun Y J, Chen W Q, Yuan H T, Chen Z Y, Xue Q K 2025 arXiv: 2502.18068 [cond-mat. supr-con]
[44] Li P, Zhou G D, Lv W, Li Y Y, Yue C M, Huang H L, Xu L Z, Shen J C, Miao Y B, Song W H, Nie Z H, Chen Y Q, Wang H, Chen W Q, Huang Y B, Chen Z H, Qian T, Lin J H, He J F, Sun Y J, Chen Z H, Xue Q K 2025 arXiv. 2501.09255 [cond-mat. supr-con]
[45] Yue C M, Miao J J, Huang H L, Hua Y C, Li P, Li Y Y, Zhou G D, Lv W, Yang Q S, Sun H Y, Sun Y J, Lin J H, Xue Q K, Chen Z Y, Chen W 2025 arXiv: 2501.06875 [cond-mat. str-el]
[46] Shen J C, Miao Y, Ou Z P, Zhou G D, Chen Y Q, Luan R Q, Sun H X, Feng Z K, Yong X R, Li P, Li Y Y, Xu L Z, Lv W, Nie Z H, Wang H, Huang H L, Sun Y J, Xue Q K, Chen Z Y, He J F 2025 arXiv. 2502.17831 [cond-mat. supr-con]
[47] Wang B Y, Zhong Y, Abadi S, Liu Y D, Yu Y J, Zhang X L, Wu Y M,Wang R H, Li J R, Tarn Y J, Ko E K, Thampy V, Hashimoto M, Lu D H, Lee Y S, Devereaux T P, Jia C J, Hwang H Y, Shen Z X 2025 arXiv: 2504.16372 [cond-mat. supr-con]
[48] Yang H B, Zhou Y N, Miao G Y, Rusz J, Yan X X, Guzman F, Xu X F, Xu X H, Aoki T, Zeiger P, Zhu X T, Wang W H, Guo J D, Wu R Q, Pan X Q 2024 Nature 635 332
Google Scholar
[49] Li F Y, Peng D, Dou J, Guo N, Ma L, Liu C, Zhang Y L, Wang L Z, Luo J, Yang J, Zhang J, Chang T Y, Chen Y S, Cai W Z, Cheng J G, Wang Y Z, Zheng Q, Zhou R, Zeng Q S, Tao X T, Zhang J J 2025 arXiv: 2501.14584 [cond-mat. supr-con]
[50] Li J Y, Peng D, Ma P Y, Zhang H Y, Xing Z F, Huang X, Huang C X, Huo M W, Hu D Y, Dong Z X, Chen X, Xie T, Dong H L, Sun H L, Zeng Q S, Mao H K, Wang M 2024 arXiv: 2404.11369 [cond-mat. supr-con]
[51] Wang Z C, Zou C T, Lin C T, Luo X Y, Yan H T, Yin C H, Xu Y, Zhou X J, Wang Y Y, Zhu J 2023 Science 381 227
Google Scholar
[52] Zhang M X, Pei C Y, Peng D, Du X, Hu W X, Cao Y T, Wang Q, Wu J F, Li Y D, Liu H Y, Wen C H P, Song J, Zhao Y, Li C H, Cao W Z, Zhu S H, Zhang Q, Yu N, Cheng P H, Zhang L L, Li Z W, Zhao J K, Chen Y L, Guo H J, Wu C J, Yang F, Zeng Q S, Yan S C, Yang L X, Qi Y P 2025 Phys. Rev. X 15 021005
Google Scholar
[53] Shi M Z, Li Y K, Wang Y X, Peng D, Yang S H, Li H P, Fan K B, Jiang K, He J F, Zeng Q S, Song D S, Ge B H, Xiang Z J, Wang Z Y, Ying J J, Wu T, Chen X H 2025 arXiv: 2501.12647 [cond-mat. supr-con]
[54] Zhang E K, Peng D, Zhu Y H, Chen L X, Cui B K, Wang X Y, Wang W B, Zeng Q S, Zhao J 2025 Phys. Rev. X 15 021008
Google Scholar
[55] Shi M Z, Peng D, Fan K B, Xing Z F, Yang S H, Wang Y Z, Li H P, Wu R Q, Du M, Ge B H, Zeng Z D, Zeng Q S, Ying J J, Wu T, Chen X H 2025 arXiv: 2502.01018 [cond-mat. supr-con]
-
图 1 (a) 铜氧化物超导体、(b) 方平面无限层结构镍氧化物超导体以及 (c) 双层RP结构镍氧化物超导体的晶体结构与电子结构示意图
Fig. 1. Schematic diagrams of the crystal structures and electronic structures of (a) cuprate superconductors, (b) square-planar infinite-layer nickelate superconductors, and (c) bilayer RP nickelate superconductors under pressure.
图 2 (a)大范围扫描透射电子显微镜图像显示3 UC La2.85Pr0.15Ni2O7/SrLaAlO4薄膜的纯相晶体结构; (b)零电阻和(c)互感抗磁性测试证实常压下双层RP结构镍氧化物超导电性的存在, 图(c)中蓝色和红色的点为实验测试数据, 实线为视觉引导线[38]
Fig. 2. (a) A large field of view scanning transmission electron microscopy image of 3 UC La2.85Pr0.15Ni2O7/SrLaAlO4 film with pure-phase crystalline structure; (b) zero resistance and (c) mutual inductance diamagnetism results confirm the existence of superconductivity of double-layer RP nickel oxide at ambient-pressure. In panel (c), the blue and red dots represent the experimental data, and the solid lines are guides to the eye[38].
-
[1] Kamerlingh Onnes H 1991 Through Measurement to Knowledge: The Selected Papers of Heike Kamerlingh Onnes 1853–1926 (Dordrecht: Springer Netherlands) p267
[2] Bardeen J, Cooper L, Schrieffer J 1957 Phys. Rev. 108 1175
Google Scholar
[3] McMillan W 1968 Phys. Rev. 167 331
Google Scholar
[4] Bednorz J, Müller K 1986 Z. Phys. B Cond. Matter 64 189
Google Scholar
[5] Uchida S, Takagi H, Kitazawa K, Tanaka S 1987 Jpn. J. Appl. Phys. 26 L1
Google Scholar
[6] 赵忠贤, 陈立泉, 杨乾声, 黄玉珍, 陈赓华, 唐汝明, 刘贵荣, 崔长庚, 陈烈, 王连忠, 郭树权, 李山林, 毕建清 1987 科学通报 32 412
Google Scholar
Zhao Z X, Chen L Q, Yang Q S, Huang Y Z, Chen G H, Tang R M, Liu G R, Cui C G, Chen L, Wang L Z, Guo S Q, Li S L, Bi J Q 1987 Chin. Sci. Bull. 32 412
Google Scholar
[7] Wu M K, Ashburn J, Torng C J, Hor P H, Meng R L, Gao L, Huang Z J, Wang Y Q, Chu C W 1987 Phys. Rev. Lett. 58 908
Google Scholar
[8] Kamihara Y, Hiramatsu H, Hirano M, Kawamura R, Yanagi H, Kamiya T, Hosono H 2006 J. Am. Chem. Soc. 128 10012
Google Scholar
[9] Kamihara Y, Watanabe T, Hirano M, Hosono H 2008 J. Am. Chem. Soc. 130 3296
Google Scholar
[10] Chen X H, Wu T, Wu G, Liu R H, Chen H, Fang D F 2008 Nature 453 761
Google Scholar
[11] Chen G F, Li Z, Wu D, Li G, Hu W Z, Dong J, Zheng P, Luo J L, Wang N L 2008 Phys. Rev. Lett. 100 247002
Google Scholar
[12] Ren Z A, Lu W, Yang J, Yi W, Shen X L, Zheng C, Che G C, Dong X L, Sun L L, Zhou F, Zhao Z X 2008 Chin. Phys. Lett. 25 2215
Google Scholar
[13] Wang Q Y, Li Z, Zhang W H, Zhang Z C, Zhang J S, Li W, Ding H, Ou Y B, Deng P, Chang K, Wen J, Song C L, He K, Jia J F, Ji S H, Wang Y Y, Wang L L, Chen X, Ma X C, Xue Q K 2012 Chin. Phys. Lett. 29 037402
Google Scholar
[14] Li D F, Lee K, Wang B Y, Osada M, Crossley S, Lee H R, Cui Y, Hikita Y, Hwang H Y 2019 Nature 572 624
Google Scholar
[15] Sun H L, Huo M W, Hu X W, Li J Y, Liu Z J, Han Y F, Tang L Y, Mao Q Z, Yang P T, Wang B S, Cheng J G, Yao D X, Zhang G M, Wang M 2023 Nature 621 493
Google Scholar
[16] Zhang Y N, Su D J, Huang Y N, Shan Z Y, Sun H L, Huo M W, Ye K X, Zhang J W, Yang Z H, Xu Y K, Su Y, Li R, Smidman M, Wang M, Jiao L, Yuan H Q 2024 Nat. Phys. 20 1269
Google Scholar
[17] Wang N N, Wang G, Shen X L, Hou J, Luo J, Ma X P, Yang H X, Shi L F, Dou J, Feng J, Yang J, Shi Y Q, Ren Z A, Ma H M, Yang P T, Liu Z Y, Liu Y, Zhang H, Dong X L, Wang Y X, Jiang K, Hu J P, Nagasaki S, Kitagawa K, Calder S, Yan J Q, Sun J P, Wang B S, Zhou R, Uwatoko Y, Cheng J G 2024 Nature 634 579
Google Scholar
[18] Zhu Y H, Peng D, Zhang E K, Pan B Y, Chen X, Chen L X, Ren H F, Liu F Y, Hao Y Q, Li N N, Xing Z F, Lan F J, Han J Y, Wang J J, Jia D H, Wo H L, Gu Y Q, Gu Y Q, Ji L, Wang W B, Gou H Y, Shen Y, Ying T Q, Chen X L, Yang W G, Cao H B, Zheng C L, Zeng Q S, Guo J G, Zhao J 2024 Nature 631 531
Google Scholar
[19] Lee J H, Luo G, Tung I C, Chang S H, Luo Z, Malshe M, Gadre M, Bhattacharya A, Nakhmanson S M, Eastman J A, Hong H, Jellinek J, Morgan D, Fong D D, Freeland J W 2014 Nat. Mater. 13 879
Google Scholar
[20] Lei Q Y, Golalikhani M, Davidson B, Liu G Z, Schlom D G, Qiao Q, Zhu Y M, Chandrasena R, Yang W B, Gray A X, Arenholz E, Farrar A K, Tenne D, Hu M H, Guo J D, Singh R, Xi X X 2017 npj Quant. Mater. 2 10
Google Scholar
[21] Zhou X R, Zhang X W, Yi J B, Qin P X, Feng Z X, Jiang P H, Zhong Z C, Yan H, Wang X N, Chen H Y, Wu H J, Zhang X, Meng Z A, Yu X J, Breese M B H, Cao J F, Wang J M, Jiang C B, Liu Z Q 2022 Adv. Mater. 34 2106117
Google Scholar
[22] Pan G A, Song Q, Segedin D, Jung M C, El-Sherif H, Fleck E, Goodge B, Doyle S, Carrizales D, N’Diaye A, Shafer P, Paik H, Kourkoutis L, Baggari I, Botana A, Brooks C, Mundy J 2022 Phys. Rev. Mater. 6 055003
Google Scholar
[23] Gao X F, Liu J H, Ji Y Y, Wei L, Xiao W, Hu S L, Li L, Gan Y L, Chen K, Liao Z L 2023 APL Mater. 11 111109
Google Scholar
[24] Wei W Z, Vu D, Zhang Z, Walker F J, Ahn C H 2023 Sci. Adv. 9 eadh3327
Google Scholar
[25] Aggarwal L, Božović I 2024 Materials 17 2546
Google Scholar
[26] Ding X, Fan Y, Wang X X, Li C H, An Z T, Ye J H, Tang S L, Lei M Y N, Sun X T, Guo N, Chen Z H, Sangphet S, Wang Y L, Xu H C, Peng R, Feng D L 2024 Nat. Sci. Rev. 11 nwae194
Google Scholar
[27] Cui T, Choi S, Lin T, Liu C, Wang G, Wang N N, Chen S R, Hong H T, Rong D K, Wang Q Y, Jin Q, Wang J O, Gu L, Ge C, Wang C, Cheng J G, Zhang Q H, Si L, Jin K J, Guo E J 2024 Commun. Mater. 5 32
Google Scholar
[28] Liu Y C, Ou M J, Chu H F, Yang H, Li Q, Zhang Y J, Wen H H 2024 Phys. Rev. Mater. 8 124801
Google Scholar
[29] Ren X L, Sutarto R, Wu X X, Zhang J F, Huang H, Xiang T, Hu J P, Comin R, Zhou X J, Zhu Z H 2025 Commun. Phys. 8 52
Google Scholar
[30] Chow S L E, Luo Z Y, Ariando A 2025 Nature DOI: 10.1038/s41586-025-08893-4
[31] Liu Y C, Ou M J, Wang Y, Wen H H 2024 arXiv. 2411.16047 [cond-mat. supr-con]
[32] Huo M W, Ma P Y, Huang C X, Huang X, Sun H L, Wang M 2025 arXiv: 2501.15929 [cond-mat. supr-con]
[33] Zhong H Y, Hao B, Wei Y, Zhang Z J, Liu R X, Huang X R, Ni X S, Cantarino M, Cao K, Nie Y F, Schmitt T, Lu X Y 2025 arXiv: 2502.03178 [cond-mat. supr-con]
[34] Xu M Y, Qiu D, Xu M H, Guo Y H, Shen C, Yang C, Sun W J, Nie Y F, Li Z X, Xiang T, Qiao L, Xiong J, Li Y R 2025 arXiv: 2502.14633 [cond-mat. supr-con]
[35] Yang M W, Wang H, Tang J Y, Luo J P, Wu X F, Mao R L, Xu W J, Zhou G D, Dong Z G, Feng B H, Shi L C, Pei Z C, Gao P, Chen Z Y, Li D F 2025 arXiv: 2503.18346 [cond-mat. supr-con]
[36] Zhou G D, Huang H L, Wang F Z, Wang H, Yang Q S, Nie Z H, Lv W, Ding C, Li Y Y, Lin J Y, Yue C M, Li D F, Sun Y J, Lin J H, Zhang G M, Xue Q K, Chen Z Y 2025 Nat. Sci. Rev. 12 nwae429
Google Scholar
[37] Ko E K, Yu Y J, Liu Y D, Bhatt L, Li J R, Thampy V, Kuo C T, Wang B Y, Lee Y, Lee K, Lee J, Goodge B H, Muller D A, Hwang H Y 2025 Nature 638 935
Google Scholar
[38] Zhou G D, Lv W, Wang H, Nie Z H, Chen Y Q, Li Y Y, Huang H L, Chen W Q, Sun Y J, Xue Q K, Chen Z Y 2025 Nature 640 641
Google Scholar
[39] Kanai M, Kawai T, Kawai S, Tabata H 1989 Appl. Phys. Lett. 54 1802
Google Scholar
[40] Kanai M, Kawai T, Kawai S 1991 Appl. Phys. Lett. 58 771
Google Scholar
[41] Dong Z H, Huo M W, Li J, Li J Y, Li P C, Sun H L, Gu L, Lu Y, Wang M, Wang Y Y, Chen Z 2024 Nature 630 847
Google Scholar
[42] Liu Y D, Ko E K, Tarn Y J, Bhatt L, Goodge B H, Muller D A, Raghu S, Yu Y J, Hwang H Y 2025 arXiv: 2501.08022 [cond-mat. supr-con]
[43] Wang H, Huang H L, Zhou G D, Lv W, Yue C M, Xu L Z, Wu X F, Nie Z H, Chen Y Q, Sun Y J, Chen W Q, Yuan H T, Chen Z Y, Xue Q K 2025 arXiv: 2502.18068 [cond-mat. supr-con]
[44] Li P, Zhou G D, Lv W, Li Y Y, Yue C M, Huang H L, Xu L Z, Shen J C, Miao Y B, Song W H, Nie Z H, Chen Y Q, Wang H, Chen W Q, Huang Y B, Chen Z H, Qian T, Lin J H, He J F, Sun Y J, Chen Z H, Xue Q K 2025 arXiv. 2501.09255 [cond-mat. supr-con]
[45] Yue C M, Miao J J, Huang H L, Hua Y C, Li P, Li Y Y, Zhou G D, Lv W, Yang Q S, Sun H Y, Sun Y J, Lin J H, Xue Q K, Chen Z Y, Chen W 2025 arXiv: 2501.06875 [cond-mat. str-el]
[46] Shen J C, Miao Y, Ou Z P, Zhou G D, Chen Y Q, Luan R Q, Sun H X, Feng Z K, Yong X R, Li P, Li Y Y, Xu L Z, Lv W, Nie Z H, Wang H, Huang H L, Sun Y J, Xue Q K, Chen Z Y, He J F 2025 arXiv. 2502.17831 [cond-mat. supr-con]
[47] Wang B Y, Zhong Y, Abadi S, Liu Y D, Yu Y J, Zhang X L, Wu Y M,Wang R H, Li J R, Tarn Y J, Ko E K, Thampy V, Hashimoto M, Lu D H, Lee Y S, Devereaux T P, Jia C J, Hwang H Y, Shen Z X 2025 arXiv: 2504.16372 [cond-mat. supr-con]
[48] Yang H B, Zhou Y N, Miao G Y, Rusz J, Yan X X, Guzman F, Xu X F, Xu X H, Aoki T, Zeiger P, Zhu X T, Wang W H, Guo J D, Wu R Q, Pan X Q 2024 Nature 635 332
Google Scholar
[49] Li F Y, Peng D, Dou J, Guo N, Ma L, Liu C, Zhang Y L, Wang L Z, Luo J, Yang J, Zhang J, Chang T Y, Chen Y S, Cai W Z, Cheng J G, Wang Y Z, Zheng Q, Zhou R, Zeng Q S, Tao X T, Zhang J J 2025 arXiv: 2501.14584 [cond-mat. supr-con]
[50] Li J Y, Peng D, Ma P Y, Zhang H Y, Xing Z F, Huang X, Huang C X, Huo M W, Hu D Y, Dong Z X, Chen X, Xie T, Dong H L, Sun H L, Zeng Q S, Mao H K, Wang M 2024 arXiv: 2404.11369 [cond-mat. supr-con]
[51] Wang Z C, Zou C T, Lin C T, Luo X Y, Yan H T, Yin C H, Xu Y, Zhou X J, Wang Y Y, Zhu J 2023 Science 381 227
Google Scholar
[52] Zhang M X, Pei C Y, Peng D, Du X, Hu W X, Cao Y T, Wang Q, Wu J F, Li Y D, Liu H Y, Wen C H P, Song J, Zhao Y, Li C H, Cao W Z, Zhu S H, Zhang Q, Yu N, Cheng P H, Zhang L L, Li Z W, Zhao J K, Chen Y L, Guo H J, Wu C J, Yang F, Zeng Q S, Yan S C, Yang L X, Qi Y P 2025 Phys. Rev. X 15 021005
Google Scholar
[53] Shi M Z, Li Y K, Wang Y X, Peng D, Yang S H, Li H P, Fan K B, Jiang K, He J F, Zeng Q S, Song D S, Ge B H, Xiang Z J, Wang Z Y, Ying J J, Wu T, Chen X H 2025 arXiv: 2501.12647 [cond-mat. supr-con]
[54] Zhang E K, Peng D, Zhu Y H, Chen L X, Cui B K, Wang X Y, Wang W B, Zeng Q S, Zhao J 2025 Phys. Rev. X 15 021008
Google Scholar
[55] Shi M Z, Peng D, Fan K B, Xing Z F, Yang S H, Wang Y Z, Li H P, Wu R Q, Du M, Ge B H, Zeng Z D, Zeng Q S, Ying J J, Wu T, Chen X H 2025 arXiv: 2502.01018 [cond-mat. supr-con]
计量
- 文章访问数: 140
- PDF下载量: 10
- 被引次数: 0