搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

常压下双层结构镍氧化物薄膜高温超导电性的发现与研究展望

陈卓昱 黄浩亮 薛其坤

引用本文:
Citation:

常压下双层结构镍氧化物薄膜高温超导电性的发现与研究展望

陈卓昱, 黄浩亮, 薛其坤
cstr: 32037.14.aps.74.20250331

Ambient-pressure Ruddlesden-Popper bilayer nickelate superconductors: From discovery to prospects

CHEN Zhuoyu, HUANG Haoliang, XUE Qikun
cstr: 32037.14.aps.74.20250331
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 近年来, 镍氧化物超导电性备受关注, 全球多个科研团队在常压和高压条件下, 发现了多种镍氧化物材料的超导电性. 来自中国和美国的研究团队通过独立、相异的研究路径, 发现了常压下双层Ruddlesden-Popper结构镍氧化物薄膜的高温超导电性, 为深入研究高温超导机理提供了全新的平台. 中国团队基于自主发展的“强氧化原子逐层外延”技术, 制备出具有原子级平滑表面的纯相双层结构镍氧化物超导薄膜. 通过原位强氧化处理技术, 可在原子级平整的薄膜表面开展ARPES等表面敏感测量, 揭示超导相的电子结构特征, 为超导微观机理的深入研究提供关键实验基础. 通过协同开展晶格结构设计、稀土/碱土元素替代以及界面应力工程调控, 有望进一步提升该体系的超导转变温度.
    In recent years, significant progress has been made in the superconductivity of nickelates, with global teams discovering various nickelate superconductors under ambient and high pressure conditions. Research teams in China and USA have independently discovered ambient-pressure superconductivity in Ruddlesden-Popper bilayer nickelate thin films through different technical pathways, establishing a novel platform for probing high-temperature superconducting mechanisms. The Chinese teams have synthesized pure-phase bilayer nickelate films with atomically smooth surfaces by using their proprietary Gigantic-Oxidative Atomic-Layer-by-Layer Epitaxy (GOALL-Epitaxy) technique. After in situ strong oxidation processing of surface, surface-sensitive measurements, such as ARPES, can be conducted on these atomically flat films to reveal the electronic structure of the superconducting phase, and further in-depth experimental research on superconducting mechanisms is expected. Through synergistic efforts in lattice engineering, rare-earth/alkaline-earth element substitution, and interface strain engineering, this system has the potential to achieve higher superconducting transition temperatures.
      通信作者: 陈卓昱, chenzhuoyu@sustech.edu.cn ; 薛其坤, xueqk@sustech.edu.cn
    • 基金项目: 国家重点研发计划 (批准号: 2024YFA1408101, 2022YFA1403101)、国家自然科学基金 (批准号: 92265112, 12374455, 52388201)、广东省量子科学战略专项 (批准号: GDZX2401004, GDZX2201001)、深圳市资助共建计划(批准号: SZZX2401001, SZZX2301004)和深圳市科技计划(批准号: KQTD20240729102026004)资助的课题.
      Corresponding author: CHEN Zhuoyu, chenzhuoyu@sustech.edu.cn ; XUE Qikun, xueqk@sustech.edu.cn
    • Funds: Project supported by the National Key R&D Program of China (Grant Nos. 2024YFA1408101, 2022YFA1403101), the National Natural Science Foundation of China (Grant Nos. 92265112, 12374455, 52388201), the Quantum Science Strategic Initiative of Guangdong Province, China (Grant Nos. GDZX2401004, GDZX2201001), the Municipal Funding Co-Construction Program of Shenzhen, China (Grant Nos. SZZX2401001, SZZX2301004), and the Science and Technology Program of Shenzhen, China (Grant No. KQTD20240729102026004).
    [1]

    Kamerlingh Onnes H 1991 Through Measurement to Knowledge: The Selected Papers of Heike Kamerlingh Onnes 1853–1926 (Dordrecht: Springer Netherlands) p267

    [2]

    Bardeen J, Cooper L, Schrieffer J 1957 Phys. Rev. 108 1175Google Scholar

    [3]

    McMillan W 1968 Phys. Rev. 167 331Google Scholar

    [4]

    Bednorz J, Müller K 1986 Z. Phys. B Cond. Matter 64 189Google Scholar

    [5]

    Uchida S, Takagi H, Kitazawa K, Tanaka S 1987 Jpn. J. Appl. Phys. 26 L1Google Scholar

    [6]

    赵忠贤, 陈立泉, 杨乾声, 黄玉珍, 陈赓华, 唐汝明, 刘贵荣, 崔长庚, 陈烈, 王连忠, 郭树权, 李山林, 毕建清 1987 科学通报 32 412Google Scholar

    Zhao Z X, Chen L Q, Yang Q S, Huang Y Z, Chen G H, Tang R M, Liu G R, Cui C G, Chen L, Wang L Z, Guo S Q, Li S L, Bi J Q 1987 Chin. Sci. Bull. 32 412Google Scholar

    [7]

    Wu M K, Ashburn J, Torng C J, Hor P H, Meng R L, Gao L, Huang Z J, Wang Y Q, Chu C W 1987 Phys. Rev. Lett. 58 908Google Scholar

    [8]

    Kamihara Y, Hiramatsu H, Hirano M, Kawamura R, Yanagi H, Kamiya T, Hosono H 2006 J. Am. Chem. Soc. 128 10012Google Scholar

    [9]

    Kamihara Y, Watanabe T, Hirano M, Hosono H 2008 J. Am. Chem. Soc. 130 3296Google Scholar

    [10]

    Chen X H, Wu T, Wu G, Liu R H, Chen H, Fang D F 2008 Nature 453 761Google Scholar

    [11]

    Chen G F, Li Z, Wu D, Li G, Hu W Z, Dong J, Zheng P, Luo J L, Wang N L 2008 Phys. Rev. Lett. 100 247002Google Scholar

    [12]

    Ren Z A, Lu W, Yang J, Yi W, Shen X L, Zheng C, Che G C, Dong X L, Sun L L, Zhou F, Zhao Z X 2008 Chin. Phys. Lett. 25 2215Google Scholar

    [13]

    Wang Q Y, Li Z, Zhang W H, Zhang Z C, Zhang J S, Li W, Ding H, Ou Y B, Deng P, Chang K, Wen J, Song C L, He K, Jia J F, Ji S H, Wang Y Y, Wang L L, Chen X, Ma X C, Xue Q K 2012 Chin. Phys. Lett. 29 037402Google Scholar

    [14]

    Li D F, Lee K, Wang B Y, Osada M, Crossley S, Lee H R, Cui Y, Hikita Y, Hwang H Y 2019 Nature 572 624Google Scholar

    [15]

    Sun H L, Huo M W, Hu X W, Li J Y, Liu Z J, Han Y F, Tang L Y, Mao Q Z, Yang P T, Wang B S, Cheng J G, Yao D X, Zhang G M, Wang M 2023 Nature 621 493Google Scholar

    [16]

    Zhang Y N, Su D J, Huang Y N, Shan Z Y, Sun H L, Huo M W, Ye K X, Zhang J W, Yang Z H, Xu Y K, Su Y, Li R, Smidman M, Wang M, Jiao L, Yuan H Q 2024 Nat. Phys. 20 1269Google Scholar

    [17]

    Wang N N, Wang G, Shen X L, Hou J, Luo J, Ma X P, Yang H X, Shi L F, Dou J, Feng J, Yang J, Shi Y Q, Ren Z A, Ma H M, Yang P T, Liu Z Y, Liu Y, Zhang H, Dong X L, Wang Y X, Jiang K, Hu J P, Nagasaki S, Kitagawa K, Calder S, Yan J Q, Sun J P, Wang B S, Zhou R, Uwatoko Y, Cheng J G 2024 Nature 634 579Google Scholar

    [18]

    Zhu Y H, Peng D, Zhang E K, Pan B Y, Chen X, Chen L X, Ren H F, Liu F Y, Hao Y Q, Li N N, Xing Z F, Lan F J, Han J Y, Wang J J, Jia D H, Wo H L, Gu Y Q, Gu Y Q, Ji L, Wang W B, Gou H Y, Shen Y, Ying T Q, Chen X L, Yang W G, Cao H B, Zheng C L, Zeng Q S, Guo J G, Zhao J 2024 Nature 631 531Google Scholar

    [19]

    Lee J H, Luo G, Tung I C, Chang S H, Luo Z, Malshe M, Gadre M, Bhattacharya A, Nakhmanson S M, Eastman J A, Hong H, Jellinek J, Morgan D, Fong D D, Freeland J W 2014 Nat. Mater. 13 879Google Scholar

    [20]

    Lei Q Y, Golalikhani M, Davidson B, Liu G Z, Schlom D G, Qiao Q, Zhu Y M, Chandrasena R, Yang W B, Gray A X, Arenholz E, Farrar A K, Tenne D, Hu M H, Guo J D, Singh R, Xi X X 2017 npj Quant. Mater. 2 10Google Scholar

    [21]

    Zhou X R, Zhang X W, Yi J B, Qin P X, Feng Z X, Jiang P H, Zhong Z C, Yan H, Wang X N, Chen H Y, Wu H J, Zhang X, Meng Z A, Yu X J, Breese M B H, Cao J F, Wang J M, Jiang C B, Liu Z Q 2022 Adv. Mater. 34 2106117Google Scholar

    [22]

    Pan G A, Song Q, Segedin D, Jung M C, El-Sherif H, Fleck E, Goodge B, Doyle S, Carrizales D, N’Diaye A, Shafer P, Paik H, Kourkoutis L, Baggari I, Botana A, Brooks C, Mundy J 2022 Phys. Rev. Mater. 6 055003Google Scholar

    [23]

    Gao X F, Liu J H, Ji Y Y, Wei L, Xiao W, Hu S L, Li L, Gan Y L, Chen K, Liao Z L 2023 APL Mater. 11 111109Google Scholar

    [24]

    Wei W Z, Vu D, Zhang Z, Walker F J, Ahn C H 2023 Sci. Adv. 9 eadh3327Google Scholar

    [25]

    Aggarwal L, Božović I 2024 Materials 17 2546Google Scholar

    [26]

    Ding X, Fan Y, Wang X X, Li C H, An Z T, Ye J H, Tang S L, Lei M Y N, Sun X T, Guo N, Chen Z H, Sangphet S, Wang Y L, Xu H C, Peng R, Feng D L 2024 Nat. Sci. Rev. 11 nwae194Google Scholar

    [27]

    Cui T, Choi S, Lin T, Liu C, Wang G, Wang N N, Chen S R, Hong H T, Rong D K, Wang Q Y, Jin Q, Wang J O, Gu L, Ge C, Wang C, Cheng J G, Zhang Q H, Si L, Jin K J, Guo E J 2024 Commun. Mater. 5 32Google Scholar

    [28]

    Liu Y C, Ou M J, Chu H F, Yang H, Li Q, Zhang Y J, Wen H H 2024 Phys. Rev. Mater. 8 124801Google Scholar

    [29]

    Ren X L, Sutarto R, Wu X X, Zhang J F, Huang H, Xiang T, Hu J P, Comin R, Zhou X J, Zhu Z H 2025 Commun. Phys. 8 52Google Scholar

    [30]

    Chow S L E, Luo Z Y, Ariando A 2025 Nature DOI: 10.1038/s41586-025-08893-4

    [31]

    Liu Y C, Ou M J, Wang Y, Wen H H 2024 arXiv. 2411.16047 [cond-mat. supr-con]

    [32]

    Huo M W, Ma P Y, Huang C X, Huang X, Sun H L, Wang M 2025 arXiv: 2501.15929 [cond-mat. supr-con]

    [33]

    Zhong H Y, Hao B, Wei Y, Zhang Z J, Liu R X, Huang X R, Ni X S, Cantarino M, Cao K, Nie Y F, Schmitt T, Lu X Y 2025 arXiv: 2502.03178 [cond-mat. supr-con]

    [34]

    Xu M Y, Qiu D, Xu M H, Guo Y H, Shen C, Yang C, Sun W J, Nie Y F, Li Z X, Xiang T, Qiao L, Xiong J, Li Y R 2025 arXiv: 2502.14633 [cond-mat. supr-con]

    [35]

    Yang M W, Wang H, Tang J Y, Luo J P, Wu X F, Mao R L, Xu W J, Zhou G D, Dong Z G, Feng B H, Shi L C, Pei Z C, Gao P, Chen Z Y, Li D F 2025 arXiv: 2503.18346 [cond-mat. supr-con]

    [36]

    Zhou G D, Huang H L, Wang F Z, Wang H, Yang Q S, Nie Z H, Lv W, Ding C, Li Y Y, Lin J Y, Yue C M, Li D F, Sun Y J, Lin J H, Zhang G M, Xue Q K, Chen Z Y 2025 Nat. Sci. Rev. 12 nwae429Google Scholar

    [37]

    Ko E K, Yu Y J, Liu Y D, Bhatt L, Li J R, Thampy V, Kuo C T, Wang B Y, Lee Y, Lee K, Lee J, Goodge B H, Muller D A, Hwang H Y 2025 Nature 638 935Google Scholar

    [38]

    Zhou G D, Lv W, Wang H, Nie Z H, Chen Y Q, Li Y Y, Huang H L, Chen W Q, Sun Y J, Xue Q K, Chen Z Y 2025 Nature 640 641Google Scholar

    [39]

    Kanai M, Kawai T, Kawai S, Tabata H 1989 Appl. Phys. Lett. 54 1802Google Scholar

    [40]

    Kanai M, Kawai T, Kawai S 1991 Appl. Phys. Lett. 58 771Google Scholar

    [41]

    Dong Z H, Huo M W, Li J, Li J Y, Li P C, Sun H L, Gu L, Lu Y, Wang M, Wang Y Y, Chen Z 2024 Nature 630 847Google Scholar

    [42]

    Liu Y D, Ko E K, Tarn Y J, Bhatt L, Goodge B H, Muller D A, Raghu S, Yu Y J, Hwang H Y 2025 arXiv: 2501.08022 [cond-mat. supr-con]

    [43]

    Wang H, Huang H L, Zhou G D, Lv W, Yue C M, Xu L Z, Wu X F, Nie Z H, Chen Y Q, Sun Y J, Chen W Q, Yuan H T, Chen Z Y, Xue Q K 2025 arXiv: 2502.18068 [cond-mat. supr-con]

    [44]

    Li P, Zhou G D, Lv W, Li Y Y, Yue C M, Huang H L, Xu L Z, Shen J C, Miao Y B, Song W H, Nie Z H, Chen Y Q, Wang H, Chen W Q, Huang Y B, Chen Z H, Qian T, Lin J H, He J F, Sun Y J, Chen Z H, Xue Q K 2025 arXiv. 2501.09255 [cond-mat. supr-con]

    [45]

    Yue C M, Miao J J, Huang H L, Hua Y C, Li P, Li Y Y, Zhou G D, Lv W, Yang Q S, Sun H Y, Sun Y J, Lin J H, Xue Q K, Chen Z Y, Chen W 2025 arXiv: 2501.06875 [cond-mat. str-el]

    [46]

    Shen J C, Miao Y, Ou Z P, Zhou G D, Chen Y Q, Luan R Q, Sun H X, Feng Z K, Yong X R, Li P, Li Y Y, Xu L Z, Lv W, Nie Z H, Wang H, Huang H L, Sun Y J, Xue Q K, Chen Z Y, He J F 2025 arXiv. 2502.17831 [cond-mat. supr-con]

    [47]

    Wang B Y, Zhong Y, Abadi S, Liu Y D, Yu Y J, Zhang X L, Wu Y M,Wang R H, Li J R, Tarn Y J, Ko E K, Thampy V, Hashimoto M, Lu D H, Lee Y S, Devereaux T P, Jia C J, Hwang H Y, Shen Z X 2025 arXiv: 2504.16372 [cond-mat. supr-con]

    [48]

    Yang H B, Zhou Y N, Miao G Y, Rusz J, Yan X X, Guzman F, Xu X F, Xu X H, Aoki T, Zeiger P, Zhu X T, Wang W H, Guo J D, Wu R Q, Pan X Q 2024 Nature 635 332Google Scholar

    [49]

    Li F Y, Peng D, Dou J, Guo N, Ma L, Liu C, Zhang Y L, Wang L Z, Luo J, Yang J, Zhang J, Chang T Y, Chen Y S, Cai W Z, Cheng J G, Wang Y Z, Zheng Q, Zhou R, Zeng Q S, Tao X T, Zhang J J 2025 arXiv: 2501.14584 [cond-mat. supr-con]

    [50]

    Li J Y, Peng D, Ma P Y, Zhang H Y, Xing Z F, Huang X, Huang C X, Huo M W, Hu D Y, Dong Z X, Chen X, Xie T, Dong H L, Sun H L, Zeng Q S, Mao H K, Wang M 2024 arXiv: 2404.11369 [cond-mat. supr-con]

    [51]

    Wang Z C, Zou C T, Lin C T, Luo X Y, Yan H T, Yin C H, Xu Y, Zhou X J, Wang Y Y, Zhu J 2023 Science 381 227Google Scholar

    [52]

    Zhang M X, Pei C Y, Peng D, Du X, Hu W X, Cao Y T, Wang Q, Wu J F, Li Y D, Liu H Y, Wen C H P, Song J, Zhao Y, Li C H, Cao W Z, Zhu S H, Zhang Q, Yu N, Cheng P H, Zhang L L, Li Z W, Zhao J K, Chen Y L, Guo H J, Wu C J, Yang F, Zeng Q S, Yan S C, Yang L X, Qi Y P 2025 Phys. Rev. X 15 021005Google Scholar

    [53]

    Shi M Z, Li Y K, Wang Y X, Peng D, Yang S H, Li H P, Fan K B, Jiang K, He J F, Zeng Q S, Song D S, Ge B H, Xiang Z J, Wang Z Y, Ying J J, Wu T, Chen X H 2025 arXiv: 2501.12647 [cond-mat. supr-con]

    [54]

    Zhang E K, Peng D, Zhu Y H, Chen L X, Cui B K, Wang X Y, Wang W B, Zeng Q S, Zhao J 2025 Phys. Rev. X 15 021008Google Scholar

    [55]

    Shi M Z, Peng D, Fan K B, Xing Z F, Yang S H, Wang Y Z, Li H P, Wu R Q, Du M, Ge B H, Zeng Z D, Zeng Q S, Ying J J, Wu T, Chen X H 2025 arXiv: 2502.01018 [cond-mat. supr-con]

  • 图 1  (a) 铜氧化物超导体、(b) 方平面无限层结构镍氧化物超导体以及 (c) 双层RP结构镍氧化物超导体的晶体结构与电子结构示意图

    Fig. 1.  Schematic diagrams of the crystal structures and electronic structures of (a) cuprate superconductors, (b) square-planar infinite-layer nickelate superconductors, and (c) bilayer RP nickelate superconductors under pressure.

    图 2  (a)大范围扫描透射电子显微镜图像显示3 UC La2.85Pr0.15Ni2O7/SrLaAlO4薄膜的纯相晶体结构; (b)零电阻和(c)互感抗磁性测试证实常压下双层RP结构镍氧化物超导电性的存在, 图(c)中蓝色和红色的点为实验测试数据, 实线为视觉引导线[38]

    Fig. 2.  (a) A large field of view scanning transmission electron microscopy image of 3 UC La2.85Pr0.15Ni2O7/SrLaAlO4 film with pure-phase crystalline structure; (b) zero resistance and (c) mutual inductance diamagnetism results confirm the existence of superconductivity of double-layer RP nickel oxide at ambient-pressure. In panel (c), the blue and red dots represent the experimental data, and the solid lines are guides to the eye[38].

    图 3  强氧化原子逐层外延原理示意图[36]

    Fig. 3.  Schematic diagram gigantic-oxidative atomic-layer-by-layer epitaxy[36].

    图 4  常压RP结构镍氧化物超导薄膜研究路线图

    Fig. 4.  Research roadmap of ambient-pressure RP phase nickelate superconducting thin films.

    Baidu
  • [1]

    Kamerlingh Onnes H 1991 Through Measurement to Knowledge: The Selected Papers of Heike Kamerlingh Onnes 1853–1926 (Dordrecht: Springer Netherlands) p267

    [2]

    Bardeen J, Cooper L, Schrieffer J 1957 Phys. Rev. 108 1175Google Scholar

    [3]

    McMillan W 1968 Phys. Rev. 167 331Google Scholar

    [4]

    Bednorz J, Müller K 1986 Z. Phys. B Cond. Matter 64 189Google Scholar

    [5]

    Uchida S, Takagi H, Kitazawa K, Tanaka S 1987 Jpn. J. Appl. Phys. 26 L1Google Scholar

    [6]

    赵忠贤, 陈立泉, 杨乾声, 黄玉珍, 陈赓华, 唐汝明, 刘贵荣, 崔长庚, 陈烈, 王连忠, 郭树权, 李山林, 毕建清 1987 科学通报 32 412Google Scholar

    Zhao Z X, Chen L Q, Yang Q S, Huang Y Z, Chen G H, Tang R M, Liu G R, Cui C G, Chen L, Wang L Z, Guo S Q, Li S L, Bi J Q 1987 Chin. Sci. Bull. 32 412Google Scholar

    [7]

    Wu M K, Ashburn J, Torng C J, Hor P H, Meng R L, Gao L, Huang Z J, Wang Y Q, Chu C W 1987 Phys. Rev. Lett. 58 908Google Scholar

    [8]

    Kamihara Y, Hiramatsu H, Hirano M, Kawamura R, Yanagi H, Kamiya T, Hosono H 2006 J. Am. Chem. Soc. 128 10012Google Scholar

    [9]

    Kamihara Y, Watanabe T, Hirano M, Hosono H 2008 J. Am. Chem. Soc. 130 3296Google Scholar

    [10]

    Chen X H, Wu T, Wu G, Liu R H, Chen H, Fang D F 2008 Nature 453 761Google Scholar

    [11]

    Chen G F, Li Z, Wu D, Li G, Hu W Z, Dong J, Zheng P, Luo J L, Wang N L 2008 Phys. Rev. Lett. 100 247002Google Scholar

    [12]

    Ren Z A, Lu W, Yang J, Yi W, Shen X L, Zheng C, Che G C, Dong X L, Sun L L, Zhou F, Zhao Z X 2008 Chin. Phys. Lett. 25 2215Google Scholar

    [13]

    Wang Q Y, Li Z, Zhang W H, Zhang Z C, Zhang J S, Li W, Ding H, Ou Y B, Deng P, Chang K, Wen J, Song C L, He K, Jia J F, Ji S H, Wang Y Y, Wang L L, Chen X, Ma X C, Xue Q K 2012 Chin. Phys. Lett. 29 037402Google Scholar

    [14]

    Li D F, Lee K, Wang B Y, Osada M, Crossley S, Lee H R, Cui Y, Hikita Y, Hwang H Y 2019 Nature 572 624Google Scholar

    [15]

    Sun H L, Huo M W, Hu X W, Li J Y, Liu Z J, Han Y F, Tang L Y, Mao Q Z, Yang P T, Wang B S, Cheng J G, Yao D X, Zhang G M, Wang M 2023 Nature 621 493Google Scholar

    [16]

    Zhang Y N, Su D J, Huang Y N, Shan Z Y, Sun H L, Huo M W, Ye K X, Zhang J W, Yang Z H, Xu Y K, Su Y, Li R, Smidman M, Wang M, Jiao L, Yuan H Q 2024 Nat. Phys. 20 1269Google Scholar

    [17]

    Wang N N, Wang G, Shen X L, Hou J, Luo J, Ma X P, Yang H X, Shi L F, Dou J, Feng J, Yang J, Shi Y Q, Ren Z A, Ma H M, Yang P T, Liu Z Y, Liu Y, Zhang H, Dong X L, Wang Y X, Jiang K, Hu J P, Nagasaki S, Kitagawa K, Calder S, Yan J Q, Sun J P, Wang B S, Zhou R, Uwatoko Y, Cheng J G 2024 Nature 634 579Google Scholar

    [18]

    Zhu Y H, Peng D, Zhang E K, Pan B Y, Chen X, Chen L X, Ren H F, Liu F Y, Hao Y Q, Li N N, Xing Z F, Lan F J, Han J Y, Wang J J, Jia D H, Wo H L, Gu Y Q, Gu Y Q, Ji L, Wang W B, Gou H Y, Shen Y, Ying T Q, Chen X L, Yang W G, Cao H B, Zheng C L, Zeng Q S, Guo J G, Zhao J 2024 Nature 631 531Google Scholar

    [19]

    Lee J H, Luo G, Tung I C, Chang S H, Luo Z, Malshe M, Gadre M, Bhattacharya A, Nakhmanson S M, Eastman J A, Hong H, Jellinek J, Morgan D, Fong D D, Freeland J W 2014 Nat. Mater. 13 879Google Scholar

    [20]

    Lei Q Y, Golalikhani M, Davidson B, Liu G Z, Schlom D G, Qiao Q, Zhu Y M, Chandrasena R, Yang W B, Gray A X, Arenholz E, Farrar A K, Tenne D, Hu M H, Guo J D, Singh R, Xi X X 2017 npj Quant. Mater. 2 10Google Scholar

    [21]

    Zhou X R, Zhang X W, Yi J B, Qin P X, Feng Z X, Jiang P H, Zhong Z C, Yan H, Wang X N, Chen H Y, Wu H J, Zhang X, Meng Z A, Yu X J, Breese M B H, Cao J F, Wang J M, Jiang C B, Liu Z Q 2022 Adv. Mater. 34 2106117Google Scholar

    [22]

    Pan G A, Song Q, Segedin D, Jung M C, El-Sherif H, Fleck E, Goodge B, Doyle S, Carrizales D, N’Diaye A, Shafer P, Paik H, Kourkoutis L, Baggari I, Botana A, Brooks C, Mundy J 2022 Phys. Rev. Mater. 6 055003Google Scholar

    [23]

    Gao X F, Liu J H, Ji Y Y, Wei L, Xiao W, Hu S L, Li L, Gan Y L, Chen K, Liao Z L 2023 APL Mater. 11 111109Google Scholar

    [24]

    Wei W Z, Vu D, Zhang Z, Walker F J, Ahn C H 2023 Sci. Adv. 9 eadh3327Google Scholar

    [25]

    Aggarwal L, Božović I 2024 Materials 17 2546Google Scholar

    [26]

    Ding X, Fan Y, Wang X X, Li C H, An Z T, Ye J H, Tang S L, Lei M Y N, Sun X T, Guo N, Chen Z H, Sangphet S, Wang Y L, Xu H C, Peng R, Feng D L 2024 Nat. Sci. Rev. 11 nwae194Google Scholar

    [27]

    Cui T, Choi S, Lin T, Liu C, Wang G, Wang N N, Chen S R, Hong H T, Rong D K, Wang Q Y, Jin Q, Wang J O, Gu L, Ge C, Wang C, Cheng J G, Zhang Q H, Si L, Jin K J, Guo E J 2024 Commun. Mater. 5 32Google Scholar

    [28]

    Liu Y C, Ou M J, Chu H F, Yang H, Li Q, Zhang Y J, Wen H H 2024 Phys. Rev. Mater. 8 124801Google Scholar

    [29]

    Ren X L, Sutarto R, Wu X X, Zhang J F, Huang H, Xiang T, Hu J P, Comin R, Zhou X J, Zhu Z H 2025 Commun. Phys. 8 52Google Scholar

    [30]

    Chow S L E, Luo Z Y, Ariando A 2025 Nature DOI: 10.1038/s41586-025-08893-4

    [31]

    Liu Y C, Ou M J, Wang Y, Wen H H 2024 arXiv. 2411.16047 [cond-mat. supr-con]

    [32]

    Huo M W, Ma P Y, Huang C X, Huang X, Sun H L, Wang M 2025 arXiv: 2501.15929 [cond-mat. supr-con]

    [33]

    Zhong H Y, Hao B, Wei Y, Zhang Z J, Liu R X, Huang X R, Ni X S, Cantarino M, Cao K, Nie Y F, Schmitt T, Lu X Y 2025 arXiv: 2502.03178 [cond-mat. supr-con]

    [34]

    Xu M Y, Qiu D, Xu M H, Guo Y H, Shen C, Yang C, Sun W J, Nie Y F, Li Z X, Xiang T, Qiao L, Xiong J, Li Y R 2025 arXiv: 2502.14633 [cond-mat. supr-con]

    [35]

    Yang M W, Wang H, Tang J Y, Luo J P, Wu X F, Mao R L, Xu W J, Zhou G D, Dong Z G, Feng B H, Shi L C, Pei Z C, Gao P, Chen Z Y, Li D F 2025 arXiv: 2503.18346 [cond-mat. supr-con]

    [36]

    Zhou G D, Huang H L, Wang F Z, Wang H, Yang Q S, Nie Z H, Lv W, Ding C, Li Y Y, Lin J Y, Yue C M, Li D F, Sun Y J, Lin J H, Zhang G M, Xue Q K, Chen Z Y 2025 Nat. Sci. Rev. 12 nwae429Google Scholar

    [37]

    Ko E K, Yu Y J, Liu Y D, Bhatt L, Li J R, Thampy V, Kuo C T, Wang B Y, Lee Y, Lee K, Lee J, Goodge B H, Muller D A, Hwang H Y 2025 Nature 638 935Google Scholar

    [38]

    Zhou G D, Lv W, Wang H, Nie Z H, Chen Y Q, Li Y Y, Huang H L, Chen W Q, Sun Y J, Xue Q K, Chen Z Y 2025 Nature 640 641Google Scholar

    [39]

    Kanai M, Kawai T, Kawai S, Tabata H 1989 Appl. Phys. Lett. 54 1802Google Scholar

    [40]

    Kanai M, Kawai T, Kawai S 1991 Appl. Phys. Lett. 58 771Google Scholar

    [41]

    Dong Z H, Huo M W, Li J, Li J Y, Li P C, Sun H L, Gu L, Lu Y, Wang M, Wang Y Y, Chen Z 2024 Nature 630 847Google Scholar

    [42]

    Liu Y D, Ko E K, Tarn Y J, Bhatt L, Goodge B H, Muller D A, Raghu S, Yu Y J, Hwang H Y 2025 arXiv: 2501.08022 [cond-mat. supr-con]

    [43]

    Wang H, Huang H L, Zhou G D, Lv W, Yue C M, Xu L Z, Wu X F, Nie Z H, Chen Y Q, Sun Y J, Chen W Q, Yuan H T, Chen Z Y, Xue Q K 2025 arXiv: 2502.18068 [cond-mat. supr-con]

    [44]

    Li P, Zhou G D, Lv W, Li Y Y, Yue C M, Huang H L, Xu L Z, Shen J C, Miao Y B, Song W H, Nie Z H, Chen Y Q, Wang H, Chen W Q, Huang Y B, Chen Z H, Qian T, Lin J H, He J F, Sun Y J, Chen Z H, Xue Q K 2025 arXiv. 2501.09255 [cond-mat. supr-con]

    [45]

    Yue C M, Miao J J, Huang H L, Hua Y C, Li P, Li Y Y, Zhou G D, Lv W, Yang Q S, Sun H Y, Sun Y J, Lin J H, Xue Q K, Chen Z Y, Chen W 2025 arXiv: 2501.06875 [cond-mat. str-el]

    [46]

    Shen J C, Miao Y, Ou Z P, Zhou G D, Chen Y Q, Luan R Q, Sun H X, Feng Z K, Yong X R, Li P, Li Y Y, Xu L Z, Lv W, Nie Z H, Wang H, Huang H L, Sun Y J, Xue Q K, Chen Z Y, He J F 2025 arXiv. 2502.17831 [cond-mat. supr-con]

    [47]

    Wang B Y, Zhong Y, Abadi S, Liu Y D, Yu Y J, Zhang X L, Wu Y M,Wang R H, Li J R, Tarn Y J, Ko E K, Thampy V, Hashimoto M, Lu D H, Lee Y S, Devereaux T P, Jia C J, Hwang H Y, Shen Z X 2025 arXiv: 2504.16372 [cond-mat. supr-con]

    [48]

    Yang H B, Zhou Y N, Miao G Y, Rusz J, Yan X X, Guzman F, Xu X F, Xu X H, Aoki T, Zeiger P, Zhu X T, Wang W H, Guo J D, Wu R Q, Pan X Q 2024 Nature 635 332Google Scholar

    [49]

    Li F Y, Peng D, Dou J, Guo N, Ma L, Liu C, Zhang Y L, Wang L Z, Luo J, Yang J, Zhang J, Chang T Y, Chen Y S, Cai W Z, Cheng J G, Wang Y Z, Zheng Q, Zhou R, Zeng Q S, Tao X T, Zhang J J 2025 arXiv: 2501.14584 [cond-mat. supr-con]

    [50]

    Li J Y, Peng D, Ma P Y, Zhang H Y, Xing Z F, Huang X, Huang C X, Huo M W, Hu D Y, Dong Z X, Chen X, Xie T, Dong H L, Sun H L, Zeng Q S, Mao H K, Wang M 2024 arXiv: 2404.11369 [cond-mat. supr-con]

    [51]

    Wang Z C, Zou C T, Lin C T, Luo X Y, Yan H T, Yin C H, Xu Y, Zhou X J, Wang Y Y, Zhu J 2023 Science 381 227Google Scholar

    [52]

    Zhang M X, Pei C Y, Peng D, Du X, Hu W X, Cao Y T, Wang Q, Wu J F, Li Y D, Liu H Y, Wen C H P, Song J, Zhao Y, Li C H, Cao W Z, Zhu S H, Zhang Q, Yu N, Cheng P H, Zhang L L, Li Z W, Zhao J K, Chen Y L, Guo H J, Wu C J, Yang F, Zeng Q S, Yan S C, Yang L X, Qi Y P 2025 Phys. Rev. X 15 021005Google Scholar

    [53]

    Shi M Z, Li Y K, Wang Y X, Peng D, Yang S H, Li H P, Fan K B, Jiang K, He J F, Zeng Q S, Song D S, Ge B H, Xiang Z J, Wang Z Y, Ying J J, Wu T, Chen X H 2025 arXiv: 2501.12647 [cond-mat. supr-con]

    [54]

    Zhang E K, Peng D, Zhu Y H, Chen L X, Cui B K, Wang X Y, Wang W B, Zeng Q S, Zhao J 2025 Phys. Rev. X 15 021008Google Scholar

    [55]

    Shi M Z, Peng D, Fan K B, Xing Z F, Yang S H, Wang Y Z, Li H P, Wu R Q, Du M, Ge B H, Zeng Z D, Zeng Q S, Ying J J, Wu T, Chen X H 2025 arXiv: 2502.01018 [cond-mat. supr-con]

  • [1] 李泽众, 洪文山, 谢涛, 刘畅, 罗会仟. 铁砷化物超导体的自旋激发谱.  , 2025, 74(1): 017401. doi: 10.7498/aps.74.20241534
    [2] 向涛. 高温超导: 推动量子多体理论革命的引擎.  , 2025, 74(7): 077403. doi: 10.7498/aps.74.20250313
    [3] 陈萤, 闫裕杰, 武岳彤, 王奇思. 铜氧化物超导体电荷序的共振X射线散射研究进展.  , 2025, 74(8): 087402. doi: 10.7498/aps.74.20241402
    [4] 周克瑾. 共振非弹性X射线散射在量子材料领域的应用.  , 2024, 73(19): 197301. doi: 10.7498/aps.73.20241009
    [5] 赵林, 刘国东, 周兴江. 高温超导体电子结构和超导机理的角分辨光电子能谱研究.  , 2021, 70(1): 017406. doi: 10.7498/aps.70.20201913
    [6] 王海波, 罗震林, 刘清青, 靳常青, 高琛, 张丽. 共振X射线衍射研究高温超导Sr2CuO3.4晶体中的调制结构.  , 2019, 68(18): 187401. doi: 10.7498/aps.68.20190494
    [7] 丁翠, 刘充, 张庆华, 龚冠铭, 汪恒, 刘效治, 孟繁琦, 杨好好, 武睿, 宋灿立, 李渭, 何珂, 马旭村, 谷林, 王立莉, 薛其坤. 单层FeSe薄膜/氧化物界面高温超导.  , 2018, 67(20): 207415. doi: 10.7498/aps.67.20181681
    [8] 龚冬良, 罗会仟. 铁基超导体中的反铁磁序和自旋动力学.  , 2018, 67(20): 207407. doi: 10.7498/aps.67.20181543
    [9] 赵林, 刘国东, 周兴江. 铁基高温超导体电子结构的角分辨光电子能谱研究.  , 2018, 67(20): 207413. doi: 10.7498/aps.67.20181768
    [10] 王萌, 欧云波, 李坊森, 张文号, 汤辰佳, 王立莉, 薛其坤, 马旭村. SrTiO3(001)衬底上单层FeSe超导薄膜的分子束外延生长.  , 2014, 63(2): 027401. doi: 10.7498/aps.63.027401
    [11] 郝颖萍, 陈祥磊, 成斌, 孔伟, 许红霞, 杜淮江, 叶邦角. SmFeAsO材料的正电子寿命研究.  , 2010, 59(4): 2789-2794. doi: 10.7498/aps.59.2789
    [12] 黎欢, 郭卫. 自旋极化对Kondo系统基态的影响.  , 2010, 59(10): 7320-7326. doi: 10.7498/aps.59.7320
    [13] 赵宏伟, 孟豪, 张凌峰, 查国桥, 周世平. 欠掺杂高温超导体中的涡旋电荷结构相变.  , 2009, 58(6): 4189-4193. doi: 10.7498/aps.58.4189
    [14] 左涛, 赵新杰, 王小坤, 岳宏卫, 方兰, 阎少林. LaAlO3衬底高温超导线性相位滤波器.  , 2009, 58(6): 4194-4198. doi: 10.7498/aps.58.4194
    [15] 尤育新, 赵志刚, 王 进, 刘 楣. 高温超导体中约瑟夫森涡旋流阻的振荡效应.  , 2008, 57(11): 7252-7256. doi: 10.7498/aps.57.7252
    [16] 吴炳国, 赵志刚, 尤育新, 刘 楣. 二维约瑟夫森结阵列中的相变及噪声频谱研究.  , 2007, 56(3): 1680-1685. doi: 10.7498/aps.56.1680
    [17] 梁芳营, 刘 洪, 李英骏. 高温超导的压力效应研究.  , 2006, 55(7): 3683-3687. doi: 10.7498/aps.55.3683
    [18] 张玉龙, 姚 忻, 张 宏, 金燕苹. YBCO熔融织构准单晶中的进氧和脱氧扩散研究.  , 2005, 54(7): 3380-3385. doi: 10.7498/aps.54.3380
    [19] 周世平, 瞿海, 廖红印. 高温超导混合配对态与磁通涡旋格子.  , 2002, 51(10): 2355-2361. doi: 10.7498/aps.51.2355
    [20] 曹天德, 黄清龙. 二分量高温超导机理.  , 2002, 51(7): 1600-1603. doi: 10.7498/aps.51.1600
计量
  • 文章访问数:  141
  • PDF下载量:  10
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-03-13
  • 修回日期:  2025-04-20
  • 上网日期:  2025-04-25

/

返回文章
返回
Baidu
map