搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

红外超连续辐射泵浦电光晶体产生的太赫兹辐射

刘雨熙 周宇龙 邵烁婷 尉鹏飞 梁奇锋 王小同 唐桧波 况龙钰 胡广月

引用本文:
Citation:

红外超连续辐射泵浦电光晶体产生的太赫兹辐射

刘雨熙, 周宇龙, 邵烁婷, 尉鹏飞, 梁奇锋, 王小同, 唐桧波, 况龙钰, 胡广月

Terahertz radiation generated by infrared supercontinuum radiation pumped electro-optic crystal

LIU Yuxi, ZHOU Yulong, SHAO Shuoting, WEI Pengfei, LIANG Qifeng, WANG Xiaotong, TANG Huibo, KUANG Longyu, HU Guangyue
cstr: 32037.14.aps.74.20250212
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 飞秒激光激发的太赫兹波在很多领域得到了广泛的应用. 本文演示了一种新的太赫兹辐射产生方式, 利用飞秒激光与透明固体介质作用产生的红外超连续辐射(>1 μm)泵浦太赫兹电光晶体, 产生了单周期、低频、宽带的太赫兹辐射. 飞秒激光电离介质过程会同时产生红外超连续辐射和太赫兹辐射, 如果产生的红外超连续辐射和太赫兹辐射一同进入电光晶体, 那么红外超连续辐射的存在会干扰原有太赫兹辐射的探测. 但通过窄带滤光片过滤出红外超连续辐射的特定成分, 可以用来测量电光晶体在红外波段的响应特征, 这为电光晶体的红外响应研究提供了新的思路.
    Femtosecond laser excited terahertz waves have been widely used in various fields. Herein, we demonstrate a novel method to generate terahertz radiation from a terahertz electro-optic crystal excited by infrared supercontinuum radiation (wavelengths > 1 μm), which is produced via the interaction between a femtosecond laser and a transparent solid medium. This approach yields single-cycle, low-frequency, broadband terahertz radiation. In the femtosecond laser-induced ionization process in a medium, both infrared supercontinuum radiation and terahertz radiation are simultaneously generated. When the resulting infrared supercontinuum radiation and terahertz radiation concurrently enter into an electro-optic crystal, the presence of the infrared supercontinuum radiation may interfere with the detection of the intrinsic terahertz radiation. By filtering the infrared supercontinuum radiation with narrowband filters, a new strategy is proposed for investigating the response of the electro-optic crystal in infrared spectral region.
      通信作者: 尉鹏飞, pfwei@usx.edu.cn ; 唐桧波, tanghb@ustc.edu.cn ; 况龙钰, kuangly0402@sina.com ; 胡广月, gyhu@ustc.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 12175230, 11775223, 12205298)、中国科学院非共识和颠覆性项目(批准号: CX2140000042)和统筹推进世界一流大学和一流学科建设专项资金(批准号: YD2140002006)资助的课题.
      Corresponding author: WEI Pengfei, pfwei@usx.edu.cn ; TANG Huibo, tanghb@ustc.edu.cn ; KUANG Longyu, kuangly0402@sina.com ; HU Guangyue, gyhu@ustc.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 12175230, 11775223, 12205298), the Chinese Academy of Sciences Program for Non-Consensus and Disruptive Research (Grant No. CX2140000042), and the “USTC Research Funds of the Double First-Class Initiative” (Grant No. YD2140002006).
    [1]

    Dhillon S S, Vitiello M S, Linfield E H, Davies A G, Hoffmann M C, Booske J, Paoloni C, Gensch M, Weightman P, Williams G P, Castro-Camus E, Cumming D R S, Simoens F, Escorcia-Carranza I, Grant J, Lucyszyn S, Kuwata-Gonokami M, Konishi K, Koch M, Schmuttenmaer C A, Cocker T L, Huber R, Markelz A G, Taylor Z D, Wallace V P, Zeitler J A, Sibik J, Korter T M, Ellison B, Rea S, Goldsmith P, Cooper K B, Appleby R, Pardo D, Huggard P G, Krozer V, Shams H, Fice M, Renaud C, Seeds A, Stöhr A, Naftaly M, Ridler N, Clarke R, Cunningham J E, Johnston M B 2017 J. Phys. D: Appl. Phys. 50 043001Google Scholar

    [2]

    Ferguson B, Zhang X C 2002 Nat. Mater. 1 26Google Scholar

    [3]

    Liu K, Xu J Z, Yuan T, Zhang X C 2006 Phys. Rev. B 73 155330Google Scholar

    [4]

    Rice A, Jin Y, Ma X F, Zhang X C, Bliss D, Larkin J, Alexander M 1994 Appl. Phys. Lett. 64 1324Google Scholar

    [5]

    Wu X J, Kong D Y, Hao S B, Zeng Y S, Yu X Q, Zhang B L, Dai M C, Liu S J, Wang J Q, Ren Z J, Chen S, Sang J H, Wang K, Zhang D D, Liu Z K, Gui J Y, Yang X J, Xu Y, Leng Y X, Li Y T, Song L W, Tian Y, Li R X 2023 Adv. Mater. 35 2208947Google Scholar

    [6]

    Tzortzakis S, Méchain G, Patalano G, André Y-B, Prade B, Franco M, Mysyrowicz A, Munier J-M, Gheudin M, Beaudin G, Encrenaz P 2002 Opt. Lett. 27 1944Google Scholar

    [7]

    Jin Q, Williams K, Dai J M, Zhang X C 2017 Appl. Phys. Lett. 111 071103Google Scholar

    [8]

    Dey I, Jana K, Fedorov V Y, Koulouklidis A D, Mondal A, Shaikh M, Sarkar D, Lad A D, Tzortzakis S, Couairon A, Kumar G R 2017 Nat. Commun. 8 1184Google Scholar

    [9]

    Liao G Q, Liu H, Scott G G, Zhang Y H, Zhu B J, Zhang Z, Li Y T, Armstrong C, Zemaityte E, Bradford P, Rusby D R, Neely D, Huggard P, McKenna P, Brenner C, Woolsey N, Wang W M, Sheng Z M, Zhang J 2020 Phys. Rev. X 10 031062Google Scholar

    [10]

    Tan Y, Zhao H, Wang W M, Zhang R, Zhao Y J, Zhang C L, Zhang X C, Zhang L L 2022 Phys. Rev. Lett. 128 093902Google Scholar

    [11]

    Chen Y X, He Y H, Dai C Y, La X Y, Tian Z, Dai J M 2024 Chin. Opt. Lett. 22 073701Google Scholar

    [12]

    Ding J, Meng Q H, Shen Y, Ding C X, Su B, Cui H L, Zhang C L 2023 Chin. Phys. B 32 048702Google Scholar

    [13]

    Wu Q, Litz M, Zhang X C 1996 Appl. Phys. Lett. 68 2924Google Scholar

    [14]

    Jin Q, Dai J M, E Y W, Zhang X C 2018 Appl. Phys. Lett. 113 261101Google Scholar

    [15]

    Jin Q, E Y W, Gao S H, Zhang X C 2020 Adv. Photon. 2 015001

    [16]

    Zafar S, Li D W, Camino A, Chang J W, Hao Z Q 2022 Chin. Phys. B 31 084209Google Scholar

    [17]

    Jiang Z P, Sun F G, Chen Q, Zhang X C 1999 Appl. Phys. Lett. 74 1191Google Scholar

    [18]

    Ojo M E, Fauquet F, Mounaix P, Bigourd D 2023 Photonics 10 316Google Scholar

    [19]

    Jiang Z, Zhang X C 1998 Appl. Phys. Lett. 72 1945Google Scholar

    [20]

    Jiang Z, Sun F G, Zhang X C 1999 Opt. Lett. 24 1245Google Scholar

    [21]

    Kim K Y, Yellampalle B, Rodriguez G, Averitt R D, Taylor A J, Glownia J H 2006 Appl. Phys. Lett. 88 041123Google Scholar

    [22]

    Tian Z, Wang C L, Xing Q R, Gu J Q, Li Y F, He M X, Chai L, Wang Q Y, Zhang W L 2008 Appl. Phys. Lett. 92 041106Google Scholar

    [23]

    Song Q, Chai L, Liu W N, Ma Q, Li Y F, Wang C Y, Hu M L 2019 Infrared Phys. Technol. 97 54Google Scholar

    [24]

    van der Valk N C, Planken P C, Buijserd A N, Bakker H J 2005 J. Opt. Soc. Amer. B 22 1714Google Scholar

  • 图 1  超连续辐射产生及太赫兹波探测实验布局 (a)单发电光采样实验装置示意图, ①光谱测量单元, ②能量测量单元, ③离焦量示意图; (b)THz-TDS系统实验装置示意图; (c)硅滤片在红外和太赫兹波段的透过率和反射率曲线; (d)低通滤片在红外和太赫兹波段的透过率曲线

    Fig. 1.  Experimental setup for generation of supercontinuum radiation and THz detection: (a) Schematic diagram of experimental setup of single-shot electro-optic, in which ① the spectral measurements unit, ②the energy measurement unit, and ③ the schematic diagram of the defocus amount; (b) schematic diagram of experimental setup of THz-TDS system; (c) transmission and reflectance curves of the silicon filter in the infrared and terahertz spectral regions; (d) transmission curve of the low-pass filter in the infrared and terahertz spectral regions.

    图 2  飞秒激光作用TPX产生的超连续谱 (a) TPX产生的超连续谱(蓝线)和激光光谱(黑色虚线); (b)经过高阻硅调制的红外超连续谱

    Fig. 2.  Supercontinuum produced by TPX with fs laser: (a) The supercontinuum generated by TPX (blue line) and the laser spectrum (black dashed line); (b) the infrared supercontinuum modulated by high-resistance silicon.

    图 3  红外超连续辐射能量随激光离焦量的变化

    Fig. 3.  Variation of infrared supercontinuum radiation intensity with laser defocus distance.

    图 4  红外超连续辐射泵浦ZnTe晶体产生的太赫兹辐射

    Fig. 4.  THz radiation generated from ZnTe crystal pumped by infrared supercontinuum radiation.

    图 5  红外超连续辐射泵浦GaP晶体产生的太赫兹辐射, 黑线为不加太赫兹低通情况下的实验结果, 红线为放入太赫兹低通时的实验结果

    Fig. 5.  THz radiation generated from GaP crystal pumped by infrared supercontinuum radiation, the black line represents the experimental results obtained without the THz low-pass filter, whereas the red line represents the experimental results obtained with the THz low-pass filter in place.

    图 6  传统THz-TDS电光采样测量的太赫兹辐射, 分别使用了ZnTe和GaP晶体

    Fig. 6.  Electro-Optic sampling results of traditional THz-TDS, ZnTe, and GaP crystals were employed, respectively.

    图 7  1064 nm成分泵浦电光晶体产生THz辐射

    Fig. 7.  Terahertz radiation generated from an electro-optic crystal pumped by a 1064 nm component.

    图 8  红外超连续辐射泵浦ZnTe晶体和800 nm飞秒激光泵浦ZnTe晶体产生的太赫兹辐射

    Fig. 8.  THz radiation generated from ZnTe crystal pumped by infrared supercontinuum radiation and an 800 nm femtosecond laser.

    Baidu
  • [1]

    Dhillon S S, Vitiello M S, Linfield E H, Davies A G, Hoffmann M C, Booske J, Paoloni C, Gensch M, Weightman P, Williams G P, Castro-Camus E, Cumming D R S, Simoens F, Escorcia-Carranza I, Grant J, Lucyszyn S, Kuwata-Gonokami M, Konishi K, Koch M, Schmuttenmaer C A, Cocker T L, Huber R, Markelz A G, Taylor Z D, Wallace V P, Zeitler J A, Sibik J, Korter T M, Ellison B, Rea S, Goldsmith P, Cooper K B, Appleby R, Pardo D, Huggard P G, Krozer V, Shams H, Fice M, Renaud C, Seeds A, Stöhr A, Naftaly M, Ridler N, Clarke R, Cunningham J E, Johnston M B 2017 J. Phys. D: Appl. Phys. 50 043001Google Scholar

    [2]

    Ferguson B, Zhang X C 2002 Nat. Mater. 1 26Google Scholar

    [3]

    Liu K, Xu J Z, Yuan T, Zhang X C 2006 Phys. Rev. B 73 155330Google Scholar

    [4]

    Rice A, Jin Y, Ma X F, Zhang X C, Bliss D, Larkin J, Alexander M 1994 Appl. Phys. Lett. 64 1324Google Scholar

    [5]

    Wu X J, Kong D Y, Hao S B, Zeng Y S, Yu X Q, Zhang B L, Dai M C, Liu S J, Wang J Q, Ren Z J, Chen S, Sang J H, Wang K, Zhang D D, Liu Z K, Gui J Y, Yang X J, Xu Y, Leng Y X, Li Y T, Song L W, Tian Y, Li R X 2023 Adv. Mater. 35 2208947Google Scholar

    [6]

    Tzortzakis S, Méchain G, Patalano G, André Y-B, Prade B, Franco M, Mysyrowicz A, Munier J-M, Gheudin M, Beaudin G, Encrenaz P 2002 Opt. Lett. 27 1944Google Scholar

    [7]

    Jin Q, Williams K, Dai J M, Zhang X C 2017 Appl. Phys. Lett. 111 071103Google Scholar

    [8]

    Dey I, Jana K, Fedorov V Y, Koulouklidis A D, Mondal A, Shaikh M, Sarkar D, Lad A D, Tzortzakis S, Couairon A, Kumar G R 2017 Nat. Commun. 8 1184Google Scholar

    [9]

    Liao G Q, Liu H, Scott G G, Zhang Y H, Zhu B J, Zhang Z, Li Y T, Armstrong C, Zemaityte E, Bradford P, Rusby D R, Neely D, Huggard P, McKenna P, Brenner C, Woolsey N, Wang W M, Sheng Z M, Zhang J 2020 Phys. Rev. X 10 031062Google Scholar

    [10]

    Tan Y, Zhao H, Wang W M, Zhang R, Zhao Y J, Zhang C L, Zhang X C, Zhang L L 2022 Phys. Rev. Lett. 128 093902Google Scholar

    [11]

    Chen Y X, He Y H, Dai C Y, La X Y, Tian Z, Dai J M 2024 Chin. Opt. Lett. 22 073701Google Scholar

    [12]

    Ding J, Meng Q H, Shen Y, Ding C X, Su B, Cui H L, Zhang C L 2023 Chin. Phys. B 32 048702Google Scholar

    [13]

    Wu Q, Litz M, Zhang X C 1996 Appl. Phys. Lett. 68 2924Google Scholar

    [14]

    Jin Q, Dai J M, E Y W, Zhang X C 2018 Appl. Phys. Lett. 113 261101Google Scholar

    [15]

    Jin Q, E Y W, Gao S H, Zhang X C 2020 Adv. Photon. 2 015001

    [16]

    Zafar S, Li D W, Camino A, Chang J W, Hao Z Q 2022 Chin. Phys. B 31 084209Google Scholar

    [17]

    Jiang Z P, Sun F G, Chen Q, Zhang X C 1999 Appl. Phys. Lett. 74 1191Google Scholar

    [18]

    Ojo M E, Fauquet F, Mounaix P, Bigourd D 2023 Photonics 10 316Google Scholar

    [19]

    Jiang Z, Zhang X C 1998 Appl. Phys. Lett. 72 1945Google Scholar

    [20]

    Jiang Z, Sun F G, Zhang X C 1999 Opt. Lett. 24 1245Google Scholar

    [21]

    Kim K Y, Yellampalle B, Rodriguez G, Averitt R D, Taylor A J, Glownia J H 2006 Appl. Phys. Lett. 88 041123Google Scholar

    [22]

    Tian Z, Wang C L, Xing Q R, Gu J Q, Li Y F, He M X, Chai L, Wang Q Y, Zhang W L 2008 Appl. Phys. Lett. 92 041106Google Scholar

    [23]

    Song Q, Chai L, Liu W N, Ma Q, Li Y F, Wang C Y, Hu M L 2019 Infrared Phys. Technol. 97 54Google Scholar

    [24]

    van der Valk N C, Planken P C, Buijserd A N, Bakker H J 2005 J. Opt. Soc. Amer. B 22 1714Google Scholar

  • [1] 姜在超, 宫正, 钟芸襄, 崔彬, 邹斌, 杨玉平. 基于几何相位的太赫兹编码超表面反射器研制与测试.  , 2023, 72(24): 248707. doi: 10.7498/aps.72.20230989
    [2] 陈乐迪, 范仁浩, 刘雨, 唐贡惠, 马中丽, 彭茹雯, 王牧. 基于柔性超构材料宽带调控太赫兹波的偏振态.  , 2022, 71(18): 187802. doi: 10.7498/aps.71.20220801
    [3] 王凯, 孙靖雅, 潘昌基, 王飞飞, 张可, 陈治成. 飞秒激光辐照二硫化钨的超快动态响应及时域整形调制.  , 2021, 70(20): 205201. doi: 10.7498/aps.70.20210737
    [4] 杨培棣, 欧阳琛, 洪天舒, 张伟豪, 苗俊刚, 吴晓君. 利用连续激光抽运-太赫兹探测技术研究单晶和多晶二氧化钒纳米薄膜的相变.  , 2020, 69(20): 204205. doi: 10.7498/aps.69.20201188
    [5] 付丽丽, 常峻巍, 陈佳琪, 张兰芝, 郝作强. 平顶飞秒激光经圆锥透镜在熔融石英中成丝及超连续辐射.  , 2020, 69(4): 044202. doi: 10.7498/aps.69.20191350
    [6] 常峻巍, 朱瑞晗, 张兰芝, 奚婷婷, 郝作强. 整形飞秒激光脉冲的成丝超连续辐射控制.  , 2020, 69(3): 034206. doi: 10.7498/aps.69.20191438
    [7] 张克瑾, 刘磊, 曾庆伟, 高太长, 胡帅, 陈鸣. 不同散射介质对飞秒脉冲激光传输特性影响研究.  , 2019, 68(19): 194207. doi: 10.7498/aps.68.20190430
    [8] 张顺浓, 朱伟骅, 李炬赓, 金钻明, 戴晔, 张宗芝, 马国宏, 姚建铨. 铁磁异质结构中的超快自旋流调制实现相干太赫兹辐射.  , 2018, 67(19): 197202. doi: 10.7498/aps.67.20181178
    [9] 李忠洋, 邴丕彬, 徐德刚, 曹小龙, 姚建铨. 级联参量振荡产生太赫兹辐射的理论研究.  , 2013, 62(8): 084212. doi: 10.7498/aps.62.084212
    [10] 王文亭, 张楠, 王明伟, 何远航, 杨建军, 朱晓农. 飞秒激光烧蚀固体靶的冲击压强.  , 2013, 62(17): 170601. doi: 10.7498/aps.62.170601
    [11] 司黎明, 侯吉旋, 刘埇, 吕昕. 基于负微分电阻碳纳米管的太赫兹波有源超材料特性参数提取.  , 2013, 62(3): 037806. doi: 10.7498/aps.62.037806
    [12] 朱丽丹, 孙方远, 祝捷, 唐大伟. 飞秒激光抽运探测热反射法对金属纳米薄膜超快非平衡传热的研究.  , 2012, 61(13): 134402. doi: 10.7498/aps.61.134402
    [13] 郭凯敏, 高 勋, 郝作强, 鲁毅, 孙长凯, 林景全. 空气中飞秒激光等离子体荧光辐射光谱研究.  , 2012, 61(7): 075212. doi: 10.7498/aps.61.075212
    [14] 冯柳宾, 鲁欣, 刘晓龙, 葛绪雷, 马景龙, 李玉同, 陈黎明, 董全力, 王伟民, 滕浩, 王兆华, 盛政明, 魏志义, 贺端威, 张杰. 飞秒激光离焦抽运熔融石英产生超连续白光的实验研究.  , 2012, 61(17): 174206. doi: 10.7498/aps.61.174206
    [15] 王光昶, 马春生, 张建炜, 白春燕, 刘玉红, 郑志坚. 飞秒激光与固体靶相互作用中光辐射时间特性的实验研究.  , 2012, 61(9): 095201. doi: 10.7498/aps.61.095201
    [16] 王玥, 吴群, 吴昱明, 傅佳辉, 王东兴, 王岩, 李乐伟. 碳纳米管辐射太赫兹波的理论分析与数值验证.  , 2011, 60(5): 057801. doi: 10.7498/aps.60.057801
    [17] 刘 欢, 徐德刚, 姚建铨. 基于GaSe和ZnGeP2晶体差频产生可调谐太赫兹辐射的理论研究.  , 2008, 57(9): 5662-5669. doi: 10.7498/aps.57.5662
    [18] 孙红起, 赵国忠, 张存林, 杨国桢. 不同中心波长飞秒脉冲激发InAs表面辐射太赫兹波的机理研究.  , 2008, 57(2): 790-795. doi: 10.7498/aps.57.790
    [19] 蔡达锋, 谷渝秋, 郑志坚, 周维民, 焦春晔, 温天舒, 淳于书泰. 飞秒激光-金属薄膜靶相互作用中靶前后超热电子能谱的比较.  , 2007, 56(1): 346-352. doi: 10.7498/aps.56.346
    [20] 谷渝秋, 蔡达锋, 郑志坚, 杨向东, 周维民, 焦春晔, 陈 豪, 温天舒, 淳于书泰. 飞秒激光-固体靶相互作用中超热电子能量分布的实验研究.  , 2005, 54(1): 186-191. doi: 10.7498/aps.54.186
计量
  • 文章访问数:  456
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-02-21
  • 修回日期:  2025-05-07
  • 上网日期:  2025-05-10

/

返回文章
返回
Baidu
map