搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

融合注意力机制的卷积网络单像素成像

王翔 周义深 张轩阁 陈希浩

引用本文:
Citation:

融合注意力机制的卷积网络单像素成像

王翔, 周义深, 张轩阁, 陈希浩
cstr: 32037.14.aps.74.20250010

Convolutional network single-pixel imaging with fusion attention mechanism

WANG Xiang, ZHOU Yishen, ZHANG Xuange, CHEN Xihao
cstr: 32037.14.aps.74.20250010
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 提出了一种基于物理驱动的融合注意力机制的新型卷积网络单像素成像方法. 通过将结合通道与空间注意力机制的模块集成到一个随机初始化的卷积网络中, 利用单像素成像的物理模型约束网络, 实现了高质量的图像重建. 具体来说, 将空间与通道两个维度的注意力机制集成为一个模块, 引入到多尺度U-net卷积网络的各层中, 通过这种方式, 不仅可以利用注意力机制在三维数据立方中提供的关键权重信息, 还充分结合了U-net网络在不同空间频率下强大的特征提取能力. 这一创新方法能够有效捕捉图像细节, 抑制背景噪声, 提升图像重建质量. 实验结果表明, 针对低采样率条件下的图像重建, 与传统非预训练网络相比, 融合注意力机制的方案不仅在直观上图像细节重建得更好, 而且在定量的评价指标(如峰值信噪比和结构相似性)上均表现出显著优势, 验证了其在单像素成像中的有效性与应用前景.
    This paper presents a novel convolutional neural network-based single-pixel imaging method that integrates a physics-driven fusion attention mechanism. By incorporating a module that combines both channel attention mechanism and spatial attention mechanism into a randomly initialized convolutional network, the method utilizes the physical model constraints of single-pixel imaging to achieve high-quality image reconstruction. Specifically, the spatial and channel attention mechanism are combined into a single module and introduced into various layers of a multi-scale U-net convolutional network. In the spatial attention mechanism, we extract the attention weight features of each spatial region of the pooled feature map by using convolution. In the channel attention mechanism, we pool the three-dimensional feature map into a single-channel signal and input it into a two-layer fully connected network to obtain the attention weight information for each channel. This approach not only uses the critical weighting information provided by the attention mechanism in the three-dimensional data cube but also fully integrates the powerful feature extraction capabilities of the U-net network across different spatial frequencies. This innovative method can effectively capture image details, suppress background noise, and improve image reconstruction quality. During the experimental phase, we employ the optical path of single-pixel imaging to acquire bucket signals for two target images, "snowflake" and "basket". By inputting any noisy image into a randomly initialized neural network with attention mechanism, and using the mean square error between simulated bucket signal and actual bucket signal, we physically constrain the convergence of the network. Ultimately, we achieve a reconstructed image that adheres to the physical model. The experimental results demonstrate that under low sampling rate conditions, the scheme of integrating the attention mechanism can not only intuitively reconstruct image details better, but also demonstrate significant advantages in quantitative evaluation metrics such as peak signal-to-noise ratio (PSNR) and structural similarity (SSIM), confirming its effectiveness and potential application in single-pixel imaging.
      通信作者: 陈希浩, xi-haochen@163.com
    • 基金项目: 国家重点研发计划(批准号: 2018YFB0504302)资助的课题.
      Corresponding author: CHEN Xihao, xi-haochen@163.com
    • Funds: Project supported by the National Key Research and Development Program of China (Grant No. 2018YFB0504302).
    [1]

    Kilcullen P, Ozaki T, Liang J 2022 Nat. Commun. 13 7879Google Scholar

    [2]

    Hahamovich E, Monin S, Hazan Y, Rosenthal A 2021 Nat. Commun. 12 4516Google Scholar

    [3]

    Shapiro J H 2008 Phys. Rev. A 78 061802Google Scholar

    [4]

    Ferri F, Magatti D, Gatti A, Bache M, Brambilla E, Lugiato L 2005 Phys. Rev. Lett. 94 183602Google Scholar

    [5]

    Wang F, Wang C, Deng C, Han S, Situ G 2022 Photon. Res. 10 104Google Scholar

    [6]

    Pan L, Shen Y, Qi J, Shi J, Feng X 2023 Opt. Express 31 13943Google Scholar

    [7]

    Song K, Bian Y, Wang D, Li R, Wu K, Liu H, Qin C, Hu J, Xiao L 2024 Laser & Photonics Rev. published online 2401397

    [8]

    Zhao X S, Yu C, Wang C, Li T, Liu B, Lu H, Zhang R, Dou X, Zhang J, Pan J W 2024 Appl. Phys. Lett. 125 211103Google Scholar

    [9]

    Karpowicz N, Zhong H, Xu J, Lin K I, Hwang J S, Zhang X C 2005 Semicond. Sci. Tech. 20 S293Google Scholar

    [10]

    Simões M, Vaz P, Cortez A F V 2024. arXiv: 2411.03907 [physics.ins-det]

    [11]

    Shwartz S 2021 Sci. Bull. 66 857Google Scholar

    [12]

    Olbinado M P, Paganin D M, Cheng Y, Rack A 2021 Optica 8 1538Google Scholar

    [13]

    Clemente P, Durán V, Tajahuerce E, Andrés P, Climent V, Lancis J 2013 Opt. Lett. 38 2524Google Scholar

    [14]

    Jiang W, Yin Y, Jiao J, Zhao X, Sun B 2022 Photon. Res. 10 2157Google Scholar

    [15]

    Gibson G M, Sun B, Edgar M P, Phillips D B, Hempler N, Maker G T, Malcolm G P A, Padgett M J 2017 Opt. Express 25 2998Google Scholar

    [16]

    Zhou L, Xiao Y, Chen W 2023 Opt. Express 31 23027Google Scholar

    [17]

    Xu Y, Lu L, Saragadam V, Kelly K F 2024 Nat. Commun. 15 1456Google Scholar

    [18]

    Li J, Li X, Yardimci N T, Hu J, Li Y, Chen J, Hung Y C, Jarrahi M, Ozcan A 2023 Nat. Commun. 14 6791Google Scholar

    [19]

    Li S, Liu X, Xiao Y, Ma Y, Yang J, Zhu K, Tian X 2023 Opt. Express 31 4712Google Scholar

    [20]

    Zheng P, Dai Q, Li Z, Ye Z, Xiong J, Liu H C, Zheng G, Zhang S 2021 Sci. Adv. 7 eabg0363Google Scholar

    [21]

    Katz O, Bromberg Y, Silberberg Y 2009 Appl. Phys. Lett. 95 131110Google Scholar

    [22]

    López-García L, Cruz-Santos W, GarcíaArellano A, Filio-Aguilar P, Cisneros-Martínez J A, Ramos-García R 2022 Opt. Express 30 13714Google Scholar

    [23]

    Zhang Z, Ma X, Zhong J 2015 Nat. Commun. 6 6225Google Scholar

    [24]

    Donoho D 2006 IEEE Trans. Inf. Theory 52 1289Google Scholar

    [25]

    Duarte M F, Davenport M A, Takhar D, Laska J N, Sun T, Kelly K F, Baraniuk R G 2008 IEEE Signal Process Mag. 25 83Google Scholar

    [26]

    Huang L, Luo R, Liu X, Hao X 2022 Light Sci. Appl. 11 61Google Scholar

    [27]

    Figueiredo M A T, Nowak R D, Wright S J 2007 IEEE J. Sel. Top. Signal Process. 11 586

    [28]

    Pioneers A 2024 Nat. Mach. Intell. 6 1271Google Scholar

    [29]

    查文舒, 李道伦, 沈路航, 张雯, 刘旭亮 2022 力学学报 54 543Google Scholar

    Zha W S, Li D L, Shen L H, Zhang W, Liu X L 2022 Chinese Journal of Theoretical and Applied Mechanics 54 543Google Scholar

    [30]

    Zhang H, Wang J, Zhang Y, Du X, Wu H, Zhang T 2024 Astronomical Techniques and Instruments 1 1

    [31]

    van Leeuwen C, Podareanu D, Codreanu V, Cai M X, Berg A, Zwart S P, Stoffer R, Veerman M, van Heerwaarden C, Otten S, Caron S, Geng C, Ambrosetti F, Bonvin A M J J 2020 arXiv: 2004.03454[cs.CE]

    [32]

    Barbastathis G, Ozcan A, Situ G 2019 Optica 6 921Google Scholar

    [33]

    Ruget A, Moodley C, Forbes A, Leach J 2024 Opt. Express 32 41057Google Scholar

    [34]

    Wetzstein G, Ozcan A, Gigan S, Fan S, Englund D, Soljačić M, Denz C, Miller D A B, Psaltis D 2020 Nature 588 39Google Scholar

    [35]

    Lyu M, Wang W, Wang H, Wang H, Li G, Chen N, Situ G 2017 Sci. Rep. 7 17865Google Scholar

    [36]

    Zhang X, Deng C, Wang C, Wang F, Situ G 2023 ACS Photonics 10 2363Google Scholar

    [37]

    Li J, Li Y, Li J, Zhang Q, Li J 2020 Opt. Express 28 22992Google Scholar

    [38]

    Wang F, Wang C, Chen M, Gong W, Zhang Y, Han S, Situ G 2022 Light Sci. Appl. 11 1Google Scholar

    [39]

    Peng L, Xie S, Qin T, Cao L, Bian L 2023 Opt. Lett. 48 2527Google Scholar

    [40]

    Liu H, Bian L, Zhang J 2023 Opt. Laser Technol. 157 108600Google Scholar

    [41]

    Liu X, Han T, Zhou C, Huang J, Ju M, Xu B, Song L 2023 Opt. Express 31 9945Google Scholar

    [42]

    Hammernik K, Küstner T, Yaman B, Huang Z, Rueckert D, Knoll F, Akçakaya M 2023 IEEE Signal Process Mag. 40 98

    [43]

    Wang P, Chen P, Yuan Y, Liu D, Huang Z, Hou X, Cottrell G W 2017. arXiv: 1702.08502[cs.CV]

    [44]

    Ulyanov D, Vedaldi A, Lempitsky V 2020 IJCV 128 1867Google Scholar

    [45]

    Ren W, Nie X, Peng T, Scully M O 2022 Opt. Express 30 47921Google Scholar

    [46]

    Zhang H, Sindagi V, Patel V M 2020 IEEE Trans. Circuits Syst. Video Technol. 30 3943Google Scholar

    [47]

    Lv W, Xiong J, Shi J, Huang Y, Qin S 2021 J. Intell. Manuf. 32 441Google Scholar

    [48]

    Zhang H, Wang Z, Liu D 2014 IEEE Transactions on Neural Networks and Learning Systems 25 1229Google Scholar

    [49]

    Baozhou Z, Hofstee P, Lee J, Al-Ars Z 2021 arXiv: 2108.08205 [cs.CV]

    [50]

    Karim N, Rahnavard N 2021 arXiv: 2107.01330[cs.CV]

    [51]

    Hoshi I, Shimobaba T, Kakue T, Ito T 2020 Opt. Express 28 34069Google Scholar

    [52]

    Stollenga M, Masci J, Gomez F, Schmidhuber J 2014 arXiv: 1407.3068[cs.CV]

    [53]

    Zhang Y, Li K, Li K, Wang L, Zhong B, Fu Y 2018 arXiv: 1807.02758[cs.CV]

    [54]

    Liao X, He L, Mao J, Xu M 2024 Remote Sensing 16 1688Google Scholar

    [55]

    Yu W K, Wang S F, Shang K Q 2024 Sensors 24 1012Google Scholar

    [56]

    Ronneberger O, Fischer P, Brox T 2015 arXiv: 1505.04597[cs.CV]

    [57]

    Meng Z, Yu Z, Xu K, Yuan X 2021 arXiv: 2108.12654 [eess.IV]

    [58]

    Ferri F, Magatti D, Lugiato L A, Gatti A 2010 Phys. Rev. Lett. 104 253603Google Scholar

    [59]

    Lin J, Yan Q, Lu S, Zheng Y, Sun S, Wei Z 2022 Photonics 9 343Google Scholar

  • 图 1  实验方案图

    Fig. 1.  Experimental schematic diagram

    图 2  融合注意力机制的U-net卷积神经网络结构示意图 (a) U-net结构的卷积网络; (b) CBAM模块结构总览; (c)空间注意力机制模块; (d)通道注意力机制模块

    Fig. 2.  Schematic diagram of U-net convolutional neural network structure with integrated attention mechanism: (a) Convolutional neural networks of a U-net architecture; (b) overall structure of CBAM; (c) spatial attention module; (d) channel attention module

    图 3  融合注意力机制与原始U-net网络重建方案在不同采样率下的结果

    Fig. 3.  Results of the fusion attention mechanism and the original U-net reconstruction scheme under different sampling rates

    图 4  不同采样率下SSIM的对比

    Fig. 4.  Comparison of SSIM at different sampling rates

    图 5  不同采样率下PSNR的对比

    Fig. 5.  Comparison of PSNR at different sampling rates

    图 6  不同迭代次数下PSNR与损失函数的变化对比 (a)两种方案重建图像的PSNR随迭代次数的变化; (b)本文方案的损失函数在不同初始学习率下随迭代次数的变化

    Fig. 6.  Comparison of PSNR and loss function under different iterations: (a) The PSNR of the reconstructed images of the two schemes varies with iterations; (b) the loss function of our scheme varies with iterations under different initial learning rates.

    Baidu
  • [1]

    Kilcullen P, Ozaki T, Liang J 2022 Nat. Commun. 13 7879Google Scholar

    [2]

    Hahamovich E, Monin S, Hazan Y, Rosenthal A 2021 Nat. Commun. 12 4516Google Scholar

    [3]

    Shapiro J H 2008 Phys. Rev. A 78 061802Google Scholar

    [4]

    Ferri F, Magatti D, Gatti A, Bache M, Brambilla E, Lugiato L 2005 Phys. Rev. Lett. 94 183602Google Scholar

    [5]

    Wang F, Wang C, Deng C, Han S, Situ G 2022 Photon. Res. 10 104Google Scholar

    [6]

    Pan L, Shen Y, Qi J, Shi J, Feng X 2023 Opt. Express 31 13943Google Scholar

    [7]

    Song K, Bian Y, Wang D, Li R, Wu K, Liu H, Qin C, Hu J, Xiao L 2024 Laser & Photonics Rev. published online 2401397

    [8]

    Zhao X S, Yu C, Wang C, Li T, Liu B, Lu H, Zhang R, Dou X, Zhang J, Pan J W 2024 Appl. Phys. Lett. 125 211103Google Scholar

    [9]

    Karpowicz N, Zhong H, Xu J, Lin K I, Hwang J S, Zhang X C 2005 Semicond. Sci. Tech. 20 S293Google Scholar

    [10]

    Simões M, Vaz P, Cortez A F V 2024. arXiv: 2411.03907 [physics.ins-det]

    [11]

    Shwartz S 2021 Sci. Bull. 66 857Google Scholar

    [12]

    Olbinado M P, Paganin D M, Cheng Y, Rack A 2021 Optica 8 1538Google Scholar

    [13]

    Clemente P, Durán V, Tajahuerce E, Andrés P, Climent V, Lancis J 2013 Opt. Lett. 38 2524Google Scholar

    [14]

    Jiang W, Yin Y, Jiao J, Zhao X, Sun B 2022 Photon. Res. 10 2157Google Scholar

    [15]

    Gibson G M, Sun B, Edgar M P, Phillips D B, Hempler N, Maker G T, Malcolm G P A, Padgett M J 2017 Opt. Express 25 2998Google Scholar

    [16]

    Zhou L, Xiao Y, Chen W 2023 Opt. Express 31 23027Google Scholar

    [17]

    Xu Y, Lu L, Saragadam V, Kelly K F 2024 Nat. Commun. 15 1456Google Scholar

    [18]

    Li J, Li X, Yardimci N T, Hu J, Li Y, Chen J, Hung Y C, Jarrahi M, Ozcan A 2023 Nat. Commun. 14 6791Google Scholar

    [19]

    Li S, Liu X, Xiao Y, Ma Y, Yang J, Zhu K, Tian X 2023 Opt. Express 31 4712Google Scholar

    [20]

    Zheng P, Dai Q, Li Z, Ye Z, Xiong J, Liu H C, Zheng G, Zhang S 2021 Sci. Adv. 7 eabg0363Google Scholar

    [21]

    Katz O, Bromberg Y, Silberberg Y 2009 Appl. Phys. Lett. 95 131110Google Scholar

    [22]

    López-García L, Cruz-Santos W, GarcíaArellano A, Filio-Aguilar P, Cisneros-Martínez J A, Ramos-García R 2022 Opt. Express 30 13714Google Scholar

    [23]

    Zhang Z, Ma X, Zhong J 2015 Nat. Commun. 6 6225Google Scholar

    [24]

    Donoho D 2006 IEEE Trans. Inf. Theory 52 1289Google Scholar

    [25]

    Duarte M F, Davenport M A, Takhar D, Laska J N, Sun T, Kelly K F, Baraniuk R G 2008 IEEE Signal Process Mag. 25 83Google Scholar

    [26]

    Huang L, Luo R, Liu X, Hao X 2022 Light Sci. Appl. 11 61Google Scholar

    [27]

    Figueiredo M A T, Nowak R D, Wright S J 2007 IEEE J. Sel. Top. Signal Process. 11 586

    [28]

    Pioneers A 2024 Nat. Mach. Intell. 6 1271Google Scholar

    [29]

    查文舒, 李道伦, 沈路航, 张雯, 刘旭亮 2022 力学学报 54 543Google Scholar

    Zha W S, Li D L, Shen L H, Zhang W, Liu X L 2022 Chinese Journal of Theoretical and Applied Mechanics 54 543Google Scholar

    [30]

    Zhang H, Wang J, Zhang Y, Du X, Wu H, Zhang T 2024 Astronomical Techniques and Instruments 1 1

    [31]

    van Leeuwen C, Podareanu D, Codreanu V, Cai M X, Berg A, Zwart S P, Stoffer R, Veerman M, van Heerwaarden C, Otten S, Caron S, Geng C, Ambrosetti F, Bonvin A M J J 2020 arXiv: 2004.03454[cs.CE]

    [32]

    Barbastathis G, Ozcan A, Situ G 2019 Optica 6 921Google Scholar

    [33]

    Ruget A, Moodley C, Forbes A, Leach J 2024 Opt. Express 32 41057Google Scholar

    [34]

    Wetzstein G, Ozcan A, Gigan S, Fan S, Englund D, Soljačić M, Denz C, Miller D A B, Psaltis D 2020 Nature 588 39Google Scholar

    [35]

    Lyu M, Wang W, Wang H, Wang H, Li G, Chen N, Situ G 2017 Sci. Rep. 7 17865Google Scholar

    [36]

    Zhang X, Deng C, Wang C, Wang F, Situ G 2023 ACS Photonics 10 2363Google Scholar

    [37]

    Li J, Li Y, Li J, Zhang Q, Li J 2020 Opt. Express 28 22992Google Scholar

    [38]

    Wang F, Wang C, Chen M, Gong W, Zhang Y, Han S, Situ G 2022 Light Sci. Appl. 11 1Google Scholar

    [39]

    Peng L, Xie S, Qin T, Cao L, Bian L 2023 Opt. Lett. 48 2527Google Scholar

    [40]

    Liu H, Bian L, Zhang J 2023 Opt. Laser Technol. 157 108600Google Scholar

    [41]

    Liu X, Han T, Zhou C, Huang J, Ju M, Xu B, Song L 2023 Opt. Express 31 9945Google Scholar

    [42]

    Hammernik K, Küstner T, Yaman B, Huang Z, Rueckert D, Knoll F, Akçakaya M 2023 IEEE Signal Process Mag. 40 98

    [43]

    Wang P, Chen P, Yuan Y, Liu D, Huang Z, Hou X, Cottrell G W 2017. arXiv: 1702.08502[cs.CV]

    [44]

    Ulyanov D, Vedaldi A, Lempitsky V 2020 IJCV 128 1867Google Scholar

    [45]

    Ren W, Nie X, Peng T, Scully M O 2022 Opt. Express 30 47921Google Scholar

    [46]

    Zhang H, Sindagi V, Patel V M 2020 IEEE Trans. Circuits Syst. Video Technol. 30 3943Google Scholar

    [47]

    Lv W, Xiong J, Shi J, Huang Y, Qin S 2021 J. Intell. Manuf. 32 441Google Scholar

    [48]

    Zhang H, Wang Z, Liu D 2014 IEEE Transactions on Neural Networks and Learning Systems 25 1229Google Scholar

    [49]

    Baozhou Z, Hofstee P, Lee J, Al-Ars Z 2021 arXiv: 2108.08205 [cs.CV]

    [50]

    Karim N, Rahnavard N 2021 arXiv: 2107.01330[cs.CV]

    [51]

    Hoshi I, Shimobaba T, Kakue T, Ito T 2020 Opt. Express 28 34069Google Scholar

    [52]

    Stollenga M, Masci J, Gomez F, Schmidhuber J 2014 arXiv: 1407.3068[cs.CV]

    [53]

    Zhang Y, Li K, Li K, Wang L, Zhong B, Fu Y 2018 arXiv: 1807.02758[cs.CV]

    [54]

    Liao X, He L, Mao J, Xu M 2024 Remote Sensing 16 1688Google Scholar

    [55]

    Yu W K, Wang S F, Shang K Q 2024 Sensors 24 1012Google Scholar

    [56]

    Ronneberger O, Fischer P, Brox T 2015 arXiv: 1505.04597[cs.CV]

    [57]

    Meng Z, Yu Z, Xu K, Yuan X 2021 arXiv: 2108.12654 [eess.IV]

    [58]

    Ferri F, Magatti D, Lugiato L A, Gatti A 2010 Phys. Rev. Lett. 104 253603Google Scholar

    [59]

    Lin J, Yan Q, Lu S, Zheng Y, Sun S, Wei Z 2022 Photonics 9 343Google Scholar

  • [1] 孙康生, 韩超, 秦海峰, 顾涛, 李薇, 于程. 基于注意力卷积神经网络的高质量全息图 快速生成算法.  , 2025, 74(8): 084203. doi: 10.7498/aps.74.20241713
    [2] 姜廷帅, 阮逸润, 李海, 白亮, 袁逸飞, 于天元. 基于信息熵赋权的多通道卷积神经网络节点重要性评估方法.  , 2025, 74(12): . doi: 10.7498/aps.74.20250329
    [3] 吴银花, 种喆, 朱鹏飞, 陈莎莎, 周顺. 基于卷积神经网络的非对称共光路相干色散光谱仪背景白光干扰去除.  , 2025, 74(10): . doi: 10.7498/aps.74.20250090
    [4] 陈明徕, 马彩文, 刘辉, 罗秀娟, 冯旭斌, 岳泽霖, 赵晶. 基于快速采样的剪切光束成像图像重构算法.  , 2024, 73(2): 024202. doi: 10.7498/aps.73.20231254
    [5] 贺芷椰, 张彦东, 唐春华, 李军利, 李四维, 于斌. 中继透镜分辨率在像素编码曝光成像中对图像重构质量的影响分析.  , 2023, 72(2): 024201. doi: 10.7498/aps.72.20221588
    [6] 张健, 陈家霖, 陈笑然, 冒添逸, 沈姗姗, 何睿清. 基于自校验的单像素成像系统动态干扰去除方法.  , 2023, 72(3): 034201. doi: 10.7498/aps.72.20221918
    [7] 胡金虎, 林丹樱, 张炜, 张晨爽, 屈军乐, 于斌. 结合虚拟单像素成像解卷积的双边照明光片荧光显微技术.  , 2022, 71(2): 028701. doi: 10.7498/aps.71.20211358
    [8] 战庆亮, 白春锦, 葛耀君. 基于时程深度学习的复杂流场流动特性表征方法.  , 2022, 71(22): 224701. doi: 10.7498/aps.71.20221314
    [9] 崔岸婧, 李道京, 吴疆, 周凯, 高敬涵. 频域稀疏采样和激光成像方法.  , 2022, 71(5): 058705. doi: 10.7498/aps.71.20211408
    [10] 赵伟瑞, 王浩, 张璐, 赵跃进, 褚春艳. 基于卷积神经网络的高精度分块镜共相检测方法.  , 2022, 71(16): 164202. doi: 10.7498/aps.71.20220434
    [11] 隋怡晖, 郭星奕, 郁钧瑾, Alexander A. Solovev, 他得安, 许凯亮. 生成对抗网络加速超分辨率超声定位显微成像方法研究.  , 2022, 71(22): 224301. doi: 10.7498/aps.71.20220954
    [12] 周静, 张晓芳, 赵延庚. 一种基于图像融合和卷积神经网络的相位恢复方法.  , 2021, 70(5): 054201. doi: 10.7498/aps.70.20201362
    [13] 黄伟建, 李永涛, 黄远. 基于混合神经网络和注意力机制的混沌时间序列预测.  , 2021, 70(1): 010501. doi: 10.7498/aps.70.20200899
    [14] 王晨阳, 段倩倩, 周凯, 姚静, 苏敏, 傅意超, 纪俊羊, 洪鑫, 刘雪芹, 汪志勇. 基于遗传算法优化卷积长短记忆混合神经网络模型的光伏发电功率预测.  , 2020, 69(10): 100701. doi: 10.7498/aps.69.20191935
    [15] 李明飞, 阎璐, 杨然, 刘院省. 基于Hadamard矩阵优化排序的快速单像素成像.  , 2019, 68(6): 064202. doi: 10.7498/aps.68.20181886
    [16] 周阳, 张红伟, 钟菲, 郭树旭. 基于自适应阈值方法实现迭代降噪鬼成像.  , 2018, 67(24): 244201. doi: 10.7498/aps.67.20181240
    [17] 姚伟强, 黄文浩, 杨初平. 单像素探测频谱重构成像理论分析.  , 2017, 66(3): 034201. doi: 10.7498/aps.66.034201
    [18] 刘鑫, 易明皓, 郭金川. 线焦斑X射线源成像.  , 2016, 65(21): 219501. doi: 10.7498/aps.65.219501
    [19] 于树海, 董磊, 刘欣悦, 凌剑勇. 傅里叶望远镜重构图像虚像分析.  , 2015, 64(18): 184205. doi: 10.7498/aps.64.184205
    [20] 曹蓓, 罗秀娟, 司庆丹, 曾志红. 相干场成像四光束相位闭合算法研究.  , 2015, 64(5): 054204. doi: 10.7498/aps.64.054204
计量
  • 文章访问数:  753
  • PDF下载量:  17
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-01-03
  • 修回日期:  2025-02-06
  • 上网日期:  2025-02-21

/

返回文章
返回
Baidu
map