搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

WSeTe/CrI3范德瓦耳斯异质结能谷的调控

廖玉民 陈许敏 徐黄雷 易水生 王辉 霍德璇

引用本文:
Citation:

WSeTe/CrI3范德瓦耳斯异质结能谷的调控

廖玉民, 陈许敏, 徐黄雷, 易水生, 王辉, 霍德璇
cstr: 32037.14.aps.74.20241750

Valley manipulation in WSeTe/CrI3 van der Waals Heterostructures: A first-principles study

LIAO Yumin, CHEN Xumin, XU Huanglei, YI Shuisheng, WANG Hui, HUO Dexuan
cstr: 32037.14.aps.74.20241750
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 范德瓦耳斯异质结构为设计二维材料的电子、自旋特性提供了丰富的平台. 解除谷简并是利用谷自由度处理和存储谷电子信息的必要条件, 二维范德瓦耳斯异质结构中的邻近效应为定制邻近材料的电子能带结构提供了可控的方法. 本文基于第一性原理计算, 研究了 WSeTe /CrI3 范德瓦耳斯异质结的电子能带结构. 通过施加垂直应变与改变衬底磁矩方向对能谷进行调控. 单层WSeTe在KK' 存在一对简并能谷, 在自旋-轨道耦合作用与磁性衬底CrI3邻近效应作用下会产生较大的谷劈裂和谷极化. 异质结产生的谷极化为25 meV. 施加垂直应变可以有效地调节能谷极化, 减小层间距可以增大谷极化. 此外, 衬底磁矩方向变化可以有效调控谷极化的方向和大小. 本文研究结果为谷自由度的调控提供了一个有效的方法, 为谷电子学和自旋电子学的应用提供了新的途径.
    The valley degree of freedom, besides charge and spin, can be used to process information and perform logic operations as well, with the advantage of low power consumption and high speed. The effective manipulation of valley degrees of freedom is essential for their practical applications in valleytronics and spintronics. In this work, the effective strategy is investigated for the valley manipulation of the WSeTe/CrI3 van der Waals heterojunction with about 2% lattice mismatch by the first-principles calculations. The valley degree of freedom in WSeTe can be modulated by the magnetism of Cr atoms in the substrate via the magnetic proximity effect, including the vertical strain method and the rotation of the magnetic moments of Cr atoms. First-principles calculations are performed by using the VASP software package with the generalized gradient approximation functional in PerdewBurke-Ernzerhof (PBE) form. The spin-orbit coupling is considered when calculating the band structure to investigate the valley properties. The dependence of valley polarization on both vertical strain and the substrate’s magnetic moment direction has been systematically analyzed. There are two different stacking configurations for the WSeTe/CrI3 heterojunction with Te/Se atoms at the interface, namely Te-stacking and Se-stacking. Although single-layer WSeTe does not have valley polarization, the Te-stacked and Se-stacked WSeTe/CrI3 heterojunctions exhibit valley polarizations of 25 meV and 2 meV, respectively, which is influenced by spin-orbit coupling and the proximity effect of the magnetic substrate CrI3, indicating the importance of the stack configuration. The Te-stacked configuration of the heterojunction has a larger valley polarization due to stronger orbital hybridization between W atoms in WSeTe layer and Cr atoms in CrI3 layer. The application of vertical strain, which effectively tunes the interlayer distance, significantly regulates the valley polarization. Specifically, the valley polarization is increased to 59 meV when the interlayer distance decreases by 0.5 Å, while it decreases to 10 meV when the interlayer distance increases by 0.5 Å. Additionally, when the magnetic moment of the CrI3 substrate rotates by 360°, the valley polarization changes between –25 meV and 25 meV. It reaches a maximum value when the magnetic moment is aligned along the out-of-plane direction. This study demonstrates that the valley degree of freedom in the WSeTe/CrI3 van der Waals heterojunction can be effectively manipulated by adjusting the interlayer distance through vertical strain and by controlling the magnetic moment direction of the substrate. These findings provide valuable insights into the design and application of valleytronic and spintronic devices based on two-dimensional van der Waals heterostructures.
      通信作者: 陈许敏, 41790@hdu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11874011)资助的课题.
      Corresponding author: CHEN Xumin, 41790@hdu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11874011).
    [1]

    Gunawan O, Shkolnikov Y P, Vakili K, Gokmen T, De Poortere E P, Shayegan M 2006 Phys. Rev. Lett. 97 186404Google Scholar

    [2]

    Rycerz A, Tworzydło J, Beenakker C W J 2007 Nat. Phys. 3 172Google Scholar

    [3]

    Sun Z H, Guan H M, Fu L, Shen B, Tang N 2021 Acta Phys. Sin. 70 027302 [孙真昊, 管鸿明, 付雷, 沈波, 唐宁 2021 70 027302]Google Scholar

    Sun Z H, Guan H M, Fu L, Shen B, Tang N 2021 Acta Phys. Sin. 70 027302Google Scholar

    [4]

    Schaibley J R, Yu H, Clark G, Rivera P, Ross J S, Seyler K L, Yao W, Xu X 2016 Nat. Rev. Mater. 1 16055Google Scholar

    [5]

    Xiao D, Liu G B, Feng W, Xu X, Yao W 2012 Phys. Rev. Lett. 108 196802Google Scholar

    [6]

    Aivazian G, Gong Z, Jones A M, Chu R L, Yan J, Mandrus D G, Zhang C, Cobden D, Yao W, Xu X 2015 Nat. Phys. 11 148Google Scholar

    [7]

    MacNeill D, Heikes C, Mak K F, Anderson Z, Kormanyos A, Zolyomi V, Park J, Ralph D C 2015 Phys. Rev. Lett. 114 037401Google Scholar

    [8]

    Srivastava A, Sidler M, Allain A V, Lembke D S, Kis A, Imamoğlu A 2015 Nat. Phys. 11 141Google Scholar

    [9]

    Xu S, Si C, Li Y, Gu B L, Duan W 2021 Nano Lett. 21 1785Google Scholar

    [10]

    Cheng Y C, Zhang Q Y, Schwingenschlögl U 2014 Phys. Rev. B 89 155429Google Scholar

    [11]

    Ramasubramaniam A, Naveh D 2013 Phys. Rev. B 87 195201Google Scholar

    [12]

    张德贺, 周文哲, 李奥林, 欧阳方平 2021 70 096301Google Scholar

    Zhang D H, Zhou W Z, Li A L, Ouyang F P 2021 Acta Phys. Sin. 70 096301Google Scholar

    [13]

    Qi J S, Li X, Niu Q, Feng J 2015 Phys. Rev. B 92 121403Google Scholar

    [14]

    Zhang Q, Yang S A, Mi W, Cheng Y, Schwingenschlogl U 2016 Adv. Mater. 28 959Google Scholar

    [15]

    Zheng G B, Zhang B, Duan H M, Zhou W Z, Ouyang F P 2023 Physica E 148 115616Google Scholar

    [16]

    邓霖湄, 司君山, 吴绪才, 张卫兵 2022 71 147101Google Scholar

    Deng L M, Si J S, Wu X C, Zhang W B 2022 Acta Phys. Sin. 71 147101Google Scholar

    [17]

    Yao W, Xiao D, Niu Q 2008 Phys. Rev. B 77 235406Google Scholar

    [18]

    Mak K F, He K, Shan J, Heinz T F 2012 Nat. Nanotechnol. 7 494Google Scholar

    [19]

    Liu H, Zhang Z, Li Y, Wu Y, Wu Z, Li X, Zhang C, Xu F, Kang J 2023 Adv. Photon. Nexus 2 026007Google Scholar

    [20]

    Stier A V, McCreary K M, Jonker B T, Kono J, Crooker S A 2016 Nat. Commun. 7 10643Google Scholar

    [21]

    Abid A, Haneef M, Ali S, Dahshan A 2022 J. Solid State Chem. 311 123159Google Scholar

    [22]

    Mehdipour H, Kratzer P 2024 Phys. Rev. B 109 085425Google Scholar

    [23]

    Sattar S, Larsson J A, Canali C M, Roche S, Garcia J H 2022 Phys. Rev. B 105 L041402Google Scholar

    [24]

    Norden T, Zhao C, Zhang P, Sabirianov R, Petrou A, Zeng H 2019 Nat. Commun. 10 4163Google Scholar

    [25]

    Hu T, Zhao G D, Gao H, Wu Y B, Hong J S, Stroppa A, Ren W 2020 Phys. Rev. B 101 125401Google Scholar

    [26]

    Zhang W L, Zhu H R, Zhang W Q, Wang J, Zhang T T, Yang S R, Shao B, Zuo X 2024 Appl. Surf. Sci. 647 158986Google Scholar

    [27]

    Ye Y, Xiao J, Wang H L, Ye Z L, Zhu H R, Zhao M, Wang Y, Zhao J H, Yin X B, Zhang X 2016 Nat. Nanotechnol. 11 598Google Scholar

    [28]

    Lu A Y, Zhu H R, Xiao J, Chuu C P, Han Y, Chiu M H, Cheng C C, Yang C W, Wei K H, Yang Y, Wang Y, Sokaras D, Nordlund D, Yang P, Muller D A, Chou M Y, Zhang X, Li L J 2017 Nat. Nanotechnol. 12 744Google Scholar

    [29]

    Zhang J, Jia S, Kholmanov I, Dong L, Er D, Chen W, Guo H, Jin Z, Shenoy V B, Shi L, Lou J 2017 ACS Nano 11 8192Google Scholar

    [30]

    Hajra D, Sailus R, Blei M, Yumigeta K, Shen Y, Tongay S 2020 ACS Nano 14 15626Google Scholar

    [31]

    Trivedi D B, Turgut G, Qin Y, Sayyad M Y, Hajra D, Howell M, Liu L, Yang S, Patoary N H, Li H, Petric M M, Meyer M, Kremser M, Barbone M, Soavi G, Stier A V, Muller K, Yang S, Esqueda I S, Zhuang H, Finley J J, Tongay S 2020 Adv. Mater. 32 2006320Google Scholar

    [32]

    Yang S Y, Shi D R, Wang T, Yue X Y, Zheng L, Zhang Q H, Gu L, Yang X Q, Shadike Z, Li H, Fu Z W 2020 J. Mater. Chem. A 8 25739Google Scholar

    [33]

    Guo S D, Zhu J X, Yin M Y, Liu B G 2022 Phys. Rev. B 105 104416Google Scholar

    [34]

    Zhang L, Zhao Y, Liu Y, Gao G 2023 Nanoscale 15 18910Google Scholar

    [35]

    Chen Y K, Zhao X S, An Y K 2024 Phys. Rev. B 109 125421Google Scholar

    [36]

    Kresse G, Furthmuller J 1996 Phys. Rev. B 54 11169Google Scholar

    [37]

    Grimme S, Antony J, Ehrlich S, Krieg H 2010 J. Chem. Phys. 132 154104Google Scholar

    [38]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188Google Scholar

    [39]

    Dudarev S L, Botton G A, Savrasov S Y, Humphreys C, Sutton A P 1998 Phys. Rev. B 57 1505Google Scholar

    [40]

    Kim H J https://github.com/Infant83/VASPBERRY [2024-7-11]

    [41]

    Hu T, Jia F H, Zhao G D, Wu J Y, Stroppa A, Ren W 2018 Phys. Rev. B 97 235404Google Scholar

    [42]

    Webster L, Yan J A 2018 Phys. Rev. B 98 144411Google Scholar

    [43]

    Ma Z, Huang P, Li J, Zhang P, Zheng J X, Xiong W, Wang F, Zhang X W 2022 npj Comput. Mater. 8 11Google Scholar

    [44]

    Zhang H J, Li Y F, Hou J H, Du A J, Chen Z F 2016 Nano Lett. 16 6124Google Scholar

    [45]

    Shao Y, Shao M, Kawazoe Y, Shi X, Pan H 2018 J. Mater. Chem. A 6 10226Google Scholar

    [46]

    Yang C, Li J, Liu X L, Bai C L 2023 Phys. Chem. Chem. Phys. 25 28796Google Scholar

  • 图 1  T堆叠WSeTe/CrI3异质结俯视图与侧视图 (a) Te构型; (b) Se构型

    Fig. 1.  Top and side views of the T-stacked WSeTe/CrI3 heterojunction: (a) Te model; (b) Se model.

    图 2  单层WSeTe的电子性质 (a)不考虑SOC的能带; (b)考虑SOC的能带; (c) Berry曲率; (d)能谷光学选择定则示意图

    Fig. 2.  Electronic properties of monolayer WSeTe: (a) Band structures without SOC; (b) band structures with SOC; (c) Berry curvature; (d) schematic diagram of valley optical selection rules.

    图 3  WSeTe/CrI3异质结能带图 (a)不考虑SOC的Se构型; (b)考虑SOC的Se构型; (c)不考虑SOC的Te构型; (d)考虑SOC的Te构型; 蓝色虚线代表自旋向下, 红色实线代表自旋向上; 插图为能谷放大视图

    Fig. 3.  Band structures of WSeTe/CrI3: (a) The band structures of Se model without SOC; (b) the band structures of Se model with SOC; (c) the band structures of Te model without SOC; (d) the band structures of Te model with SOC, the blue dashed lines represent spin-down, and the red lines represent spin-up. The insets are enlarged local views.

    图 4  WSeTe/CrI3异质结Te构型的投影能带图 (a)原子投影能带; (b) CrI3与WSeTe层投影能带; (c) W原子Sz方向自旋投影能带, 其中红色和蓝色代表自旋向上和向下的能带, ${E_\sigma }$代表导带谷到价带谷的能量差

    Fig. 4.  Projected band structures of the Te-model WSeTe/CrI3 heterojunction: (a) Atom projected band structures; (b) layer projected band structures of CrI3 and WSeTe; (c) projected band structures of W along the Sz direction of spin, where the red and blue circles correspond to spin-up and spin-down bands, ${E_\sigma }$represents the energy difference from the conduction band valley to the valence band valley.

    图 5  KK' 附近能带与Berry曲率 (a)磁矩+Z (θ = 0°)方向的能带, 插图为磁矩方向示意图; (b) 磁矩+Z (θ = 0°)方向的Berry曲率; (c)磁矩–Z (θ = 180°)方向的能带;(d)磁矩–Z (θ = 180°)方向的Berry曲率; 红色和蓝色代表自旋向上和向下的能带

    Fig. 5.  Bands and Berry curvature near the K and K' points: (a) Band structures for the magnetic moment along the +Z (θ = 0°) direction, with an inset diagram illustrating the direction of the magnetic moment; (b) Berry curvature for the magnetic moment along the +Z (θ = 0°) direction; (c) bands structures for the magnetic moment along the –Z (θ = 180°) direction; (d) Berry curvature for the magnetic moment along the –Z (θ = 180°) direction; the red and blue circles correspond to spin-up and spin-down bands.

    图 6  (a)不同Cr磁矩方向的能谷及谷极化大小, 其中蓝色线条代表不同磁矩方向下的谷极化; (b)不同层间距下能谷及谷极化大小, 其中蓝色线条代表不同层间距下的谷极化${\text{|}}\Delta {E_\sigma }{\text{|}}$大小; 橙色和绿色柱状图分别表示了KK' 处谷的能量

    Fig. 6.  (a) Valley and valley polarization for different Cr magnetic moments, where blue lines represent the valley polarization under different magnetization angles; (b) valley and valley polarization under different interlayer distance, where blue lines represent the valley polarization magnitudes at different interlayer distance. The orange and green bar charts indicate the energy of the valleys at the K and K' , respectively.

    图 A1  WSeTe/CrI3异质结六种不同堆叠方式下的俯视图与侧视图 (a) Se构型的T型、H型和R型堆叠方式; (b) Te构型的T型、H型和R型堆叠方式

    Fig. A1.  Top and side views of six different stacking configurations of the WSeTe/CrI3: (a) T-, H-, R-model with stacking configuration of Se; (b) T-, H-, R-model with stacking configuration of Te.

    图 A2  WSeTe/CrI3异质结声子谱

    Fig. A2.  Phonon spectra of the WSeTe/CrI3 heterojunction.

    图 A3  WSeTe/CrI3 T堆叠Te构型HSE06计算的能带结构(红色和蓝色代表自旋向上和向下的能带)

    Fig. A3.  WSeTe/CrI3’s band structures of the T-stacked Te model with hybrid functional HSE06. The red and blue circles correspond to spin-up and spin-down bands.

    表 A1  6种不同结构的晶格常数、层间距和结合能

    Table A1.  Lattice constant, interlayer distance, and binding energy for six different models.

    堆叠方式 晶格常数a = b 层间距d 结合能Eb/eV
    T-Te 6.84 3.79 –3.59
    T-Se 6.84 3.61 –3.58
    H-Te 6.83 3.85 –3.52
    H-Se 6.83 3.67 –3.51
    R-Te 6.84 3.78 –3.58
    R-Se 6.84 3.52 –3.58
    下载: 导出CSV
    Baidu
  • [1]

    Gunawan O, Shkolnikov Y P, Vakili K, Gokmen T, De Poortere E P, Shayegan M 2006 Phys. Rev. Lett. 97 186404Google Scholar

    [2]

    Rycerz A, Tworzydło J, Beenakker C W J 2007 Nat. Phys. 3 172Google Scholar

    [3]

    Sun Z H, Guan H M, Fu L, Shen B, Tang N 2021 Acta Phys. Sin. 70 027302 [孙真昊, 管鸿明, 付雷, 沈波, 唐宁 2021 70 027302]Google Scholar

    Sun Z H, Guan H M, Fu L, Shen B, Tang N 2021 Acta Phys. Sin. 70 027302Google Scholar

    [4]

    Schaibley J R, Yu H, Clark G, Rivera P, Ross J S, Seyler K L, Yao W, Xu X 2016 Nat. Rev. Mater. 1 16055Google Scholar

    [5]

    Xiao D, Liu G B, Feng W, Xu X, Yao W 2012 Phys. Rev. Lett. 108 196802Google Scholar

    [6]

    Aivazian G, Gong Z, Jones A M, Chu R L, Yan J, Mandrus D G, Zhang C, Cobden D, Yao W, Xu X 2015 Nat. Phys. 11 148Google Scholar

    [7]

    MacNeill D, Heikes C, Mak K F, Anderson Z, Kormanyos A, Zolyomi V, Park J, Ralph D C 2015 Phys. Rev. Lett. 114 037401Google Scholar

    [8]

    Srivastava A, Sidler M, Allain A V, Lembke D S, Kis A, Imamoğlu A 2015 Nat. Phys. 11 141Google Scholar

    [9]

    Xu S, Si C, Li Y, Gu B L, Duan W 2021 Nano Lett. 21 1785Google Scholar

    [10]

    Cheng Y C, Zhang Q Y, Schwingenschlögl U 2014 Phys. Rev. B 89 155429Google Scholar

    [11]

    Ramasubramaniam A, Naveh D 2013 Phys. Rev. B 87 195201Google Scholar

    [12]

    张德贺, 周文哲, 李奥林, 欧阳方平 2021 70 096301Google Scholar

    Zhang D H, Zhou W Z, Li A L, Ouyang F P 2021 Acta Phys. Sin. 70 096301Google Scholar

    [13]

    Qi J S, Li X, Niu Q, Feng J 2015 Phys. Rev. B 92 121403Google Scholar

    [14]

    Zhang Q, Yang S A, Mi W, Cheng Y, Schwingenschlogl U 2016 Adv. Mater. 28 959Google Scholar

    [15]

    Zheng G B, Zhang B, Duan H M, Zhou W Z, Ouyang F P 2023 Physica E 148 115616Google Scholar

    [16]

    邓霖湄, 司君山, 吴绪才, 张卫兵 2022 71 147101Google Scholar

    Deng L M, Si J S, Wu X C, Zhang W B 2022 Acta Phys. Sin. 71 147101Google Scholar

    [17]

    Yao W, Xiao D, Niu Q 2008 Phys. Rev. B 77 235406Google Scholar

    [18]

    Mak K F, He K, Shan J, Heinz T F 2012 Nat. Nanotechnol. 7 494Google Scholar

    [19]

    Liu H, Zhang Z, Li Y, Wu Y, Wu Z, Li X, Zhang C, Xu F, Kang J 2023 Adv. Photon. Nexus 2 026007Google Scholar

    [20]

    Stier A V, McCreary K M, Jonker B T, Kono J, Crooker S A 2016 Nat. Commun. 7 10643Google Scholar

    [21]

    Abid A, Haneef M, Ali S, Dahshan A 2022 J. Solid State Chem. 311 123159Google Scholar

    [22]

    Mehdipour H, Kratzer P 2024 Phys. Rev. B 109 085425Google Scholar

    [23]

    Sattar S, Larsson J A, Canali C M, Roche S, Garcia J H 2022 Phys. Rev. B 105 L041402Google Scholar

    [24]

    Norden T, Zhao C, Zhang P, Sabirianov R, Petrou A, Zeng H 2019 Nat. Commun. 10 4163Google Scholar

    [25]

    Hu T, Zhao G D, Gao H, Wu Y B, Hong J S, Stroppa A, Ren W 2020 Phys. Rev. B 101 125401Google Scholar

    [26]

    Zhang W L, Zhu H R, Zhang W Q, Wang J, Zhang T T, Yang S R, Shao B, Zuo X 2024 Appl. Surf. Sci. 647 158986Google Scholar

    [27]

    Ye Y, Xiao J, Wang H L, Ye Z L, Zhu H R, Zhao M, Wang Y, Zhao J H, Yin X B, Zhang X 2016 Nat. Nanotechnol. 11 598Google Scholar

    [28]

    Lu A Y, Zhu H R, Xiao J, Chuu C P, Han Y, Chiu M H, Cheng C C, Yang C W, Wei K H, Yang Y, Wang Y, Sokaras D, Nordlund D, Yang P, Muller D A, Chou M Y, Zhang X, Li L J 2017 Nat. Nanotechnol. 12 744Google Scholar

    [29]

    Zhang J, Jia S, Kholmanov I, Dong L, Er D, Chen W, Guo H, Jin Z, Shenoy V B, Shi L, Lou J 2017 ACS Nano 11 8192Google Scholar

    [30]

    Hajra D, Sailus R, Blei M, Yumigeta K, Shen Y, Tongay S 2020 ACS Nano 14 15626Google Scholar

    [31]

    Trivedi D B, Turgut G, Qin Y, Sayyad M Y, Hajra D, Howell M, Liu L, Yang S, Patoary N H, Li H, Petric M M, Meyer M, Kremser M, Barbone M, Soavi G, Stier A V, Muller K, Yang S, Esqueda I S, Zhuang H, Finley J J, Tongay S 2020 Adv. Mater. 32 2006320Google Scholar

    [32]

    Yang S Y, Shi D R, Wang T, Yue X Y, Zheng L, Zhang Q H, Gu L, Yang X Q, Shadike Z, Li H, Fu Z W 2020 J. Mater. Chem. A 8 25739Google Scholar

    [33]

    Guo S D, Zhu J X, Yin M Y, Liu B G 2022 Phys. Rev. B 105 104416Google Scholar

    [34]

    Zhang L, Zhao Y, Liu Y, Gao G 2023 Nanoscale 15 18910Google Scholar

    [35]

    Chen Y K, Zhao X S, An Y K 2024 Phys. Rev. B 109 125421Google Scholar

    [36]

    Kresse G, Furthmuller J 1996 Phys. Rev. B 54 11169Google Scholar

    [37]

    Grimme S, Antony J, Ehrlich S, Krieg H 2010 J. Chem. Phys. 132 154104Google Scholar

    [38]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188Google Scholar

    [39]

    Dudarev S L, Botton G A, Savrasov S Y, Humphreys C, Sutton A P 1998 Phys. Rev. B 57 1505Google Scholar

    [40]

    Kim H J https://github.com/Infant83/VASPBERRY [2024-7-11]

    [41]

    Hu T, Jia F H, Zhao G D, Wu J Y, Stroppa A, Ren W 2018 Phys. Rev. B 97 235404Google Scholar

    [42]

    Webster L, Yan J A 2018 Phys. Rev. B 98 144411Google Scholar

    [43]

    Ma Z, Huang P, Li J, Zhang P, Zheng J X, Xiong W, Wang F, Zhang X W 2022 npj Comput. Mater. 8 11Google Scholar

    [44]

    Zhang H J, Li Y F, Hou J H, Du A J, Chen Z F 2016 Nano Lett. 16 6124Google Scholar

    [45]

    Shao Y, Shao M, Kawazoe Y, Shi X, Pan H 2018 J. Mater. Chem. A 6 10226Google Scholar

    [46]

    Yang C, Li J, Liu X L, Bai C L 2023 Phys. Chem. Chem. Phys. 25 28796Google Scholar

  • [1] 刘俊岭, 柏于杰, 徐宁, 张勤芳. GaS/Mg(OH)2异质结电子结构的第一性原理研究.  , 2024, 73(13): 137103. doi: 10.7498/aps.73.20231979
    [2] 吴迪, 杨永, 章小峰, 黄贞益, 王昭东. 第一性原理研究合金元素对逆变奥氏体在Cu沉淀上异质形核的影响.  , 2022, 71(8): 086301. doi: 10.7498/aps.71.20212144
    [3] 姚熠舟, 曹丹, 颜洁, 刘雪吟, 王建峰, 姜舟婷, 舒海波. 氧氯化铋/铯铅氯范德瓦耳斯异质结环境稳定性与光电性质的第一性原理研究.  , 2022, 71(19): 197901. doi: 10.7498/aps.71.20220544
    [4] 姜楠, 李奥林, 蘧水仙, 勾思, 欧阳方平. 应变诱导单层NbSi2N4材料磁转变的第一性原理研究.  , 2022, 71(20): 206303. doi: 10.7498/aps.71.20220939
    [5] 房晓南, 杜颜伶, 吴晨雨, 刘静. (SrVO3)5/(SrTiO3)1(111)异质结金属-绝缘体转变和磁性调控的第一性原理研究.  , 2022, 71(18): 187301. doi: 10.7498/aps.71.20220627
    [6] 秦文静, 徐波, 孙宝珍, 刘刚. 原子吸附的二维CrI3铁磁半导体电学和磁学性质的第一性原理研究.  , 2021, 70(11): 117101. doi: 10.7498/aps.70.20210090
    [7] 白亮, 赵启旭, 沈健伟, 杨岩, 袁清红, 钟成, 孙海涛, 孙真荣. 基于MXene涂层保护Cs3Sb异质结光阴极材料的计算筛选.  , 2021, 70(21): 218504. doi: 10.7498/aps.70.20210956
    [8] 马浩浩, 张显斌, 魏旭艳, 曹佳萌. 非金属元素掺杂二硒化钨/石墨烯异质结对其肖特基调控的理论研究.  , 2020, 69(11): 117101. doi: 10.7498/aps.69.20200080
    [9] 郭丽娟, 胡吉松, 马新国, 项炬. 二硫化钨/石墨烯异质结的界面相互作用及其肖特基调控的理论研究.  , 2019, 68(9): 097101. doi: 10.7498/aps.68.20190020
    [10] 李小影, 黄灿, 朱岩, 李晋斌, 樊济宇, 潘燕飞, 施大宁, 马春兰. -(Zn,Cr)S(111)表面上的Dzyaloshinsky-Moriya作用:第一性原理计算.  , 2018, 67(13): 137101. doi: 10.7498/aps.67.20180342
    [11] 熊辉辉, 刘昭, 张恒华, 周阳, 俞园. 合金元素对钢中NbC异质形核影响的第一性原理研究.  , 2017, 66(16): 168101. doi: 10.7498/aps.66.168101
    [12] 颜送灵, 唐黎明, 赵宇清. 不同组分厚度比的LaMnO3/SrTiO3异质界面电子结构和磁性的第一性原理研究.  , 2016, 65(7): 077301. doi: 10.7498/aps.65.077301
    [13] 张燕如, 张琳, 任俊峰, 原晓波, 胡贵超. Gd掺杂ZnO纳米线磁耦合性质的第一性原理研究.  , 2015, 64(17): 178103. doi: 10.7498/aps.64.178103
    [14] 杨理践, 刘斌, 高松巍, 陈立佳. 金属磁记忆效应的第一性原理计算与实验研究.  , 2013, 62(8): 086201. doi: 10.7498/aps.62.086201
    [15] 王爱玲, 毋志民, 王聪, 胡爱元, 赵若禺. 新型稀磁半导体Mn掺杂LiZnAs的第一性原理研究.  , 2013, 62(13): 137101. doi: 10.7498/aps.62.137101
    [16] 刘先锋, 韩玖荣, 江学范. 阻挫三角反铁磁AgCrO2螺旋自旋序的第一性原理研究.  , 2010, 59(9): 6487-6493. doi: 10.7498/aps.59.6487
    [17] 朱兴华, 张海波, 杨定宇, 王治国, 祖小涛. C/SiC纳米管异质结电子结构的第一性原理研究.  , 2010, 59(11): 7961-7965. doi: 10.7498/aps.59.7961
    [18] 李艳武, 刘彭义, 侯林涛, 吴冰. Rubrene作电子传输层的异质结有机太阳能电池.  , 2010, 59(2): 1248-1251. doi: 10.7498/aps.59.1248
    [19] 陈珊, 吴青云, 陈志高, 许桂贵, 黄志高. ZnO1-xCx稀磁半导体的磁特性的第一性原理和蒙特卡罗研究.  , 2009, 58(3): 2011-2017. doi: 10.7498/aps.58.2011
    [20] 李书平, 王仁智, 郑永梅, 蔡淑惠, 何国敏. 平均键能方法在应变层异质结带阶研究中的应用.  , 2000, 49(8): 1441-1446. doi: 10.7498/aps.49.1441
计量
  • 文章访问数:  335
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-12-20
  • 修回日期:  2025-02-08
  • 上网日期:  2025-03-04

/

返回文章
返回
Baidu
map