搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

激光诱导自旋阀结构的超快自旋动力学研究

芦闻天 姚春伟 严志 袁喆

引用本文:
Citation:

激光诱导自旋阀结构的超快自旋动力学研究

芦闻天, 姚春伟, 严志, 袁喆
cstr: 32037.14.aps.74.20241744

Research on ultrafast spin dynamics of laser-induced spin valve structures

LU Wentian, YAO Chunwei, YAN Zhi, YUAN Zhe
cstr: 32037.14.aps.74.20241744
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 超快退磁的发现提供了一种使用超短激光产生超快自旋流的新手段, 从而可能更快地操纵材料磁性. 然而, 这一过程仍未被理解, 尤其是超快自旋流在层间转移中的影响因素尚不明晰. 本文利用超扩散自旋输运模型对Ni/Ru/Fe自旋阀结构体系的超快自旋输运机制进行了深入研究, 尤其关注层间自旋转移效率对铁磁层超快磁动力学的影响. 本研究计算出铁磁层在不同磁化排列下的退磁差异, 并通过调节间隔层厚度, 揭示出超快自旋输运在磁动力学中的关键作用. 此外, 还确定了热电子自旋流在间隔层中的自旋衰减长度. 通过控制激光的薄膜吸收, 进一步发现了能够引起铁磁层瞬态磁化增强的条件. 这些结果对于理解热电子自旋流的输运机制具有重要意义, 为未来控制超快自旋流提供了理论基础.
    The discovery of ultrafast demagnetization has provided a new means for generating ultrafast spin currents by using an ultrashort laser, potentially enabling faster manipulation of material magnetism. This has sparked research on the transport mechanisms of ultrafast spin currents. However, the basic processes are still poorly understood, especially the factors influencing interlayer spin transfer. In this work, a superdiffusive spin transport model is used to investigate the ultrafast spin transport mechanism in the Ni/Ru/Fe spin valve system, with a particular focus on how interlayer spin transfer affects the ultrafast magnetization dynamics of the ferromagnetic layer. First, by calculating the laser-induced magnetization dynamics of the Ni/Ru/Fe system under different magnetization alignments, the recent experimental findings are validated. Further analysis shows that reducing the thickness of the Ru spacer layer will significantly enhance the spin current intensity and increase the demagnetization difference in the Fe layer, confirming the key role of the hot electron spin current generated by the Ni layer in interlayer spin transport. In addition, the spin decay length of hot electron spin currents in the spacer Ru layer is determined to be approximately 0.5 nm. This work also shows that laser-induced transient magnetization enhancement can be achieved by adjusting the relative laser absorption in the films. These results provide theoretical support for ultrafast magnetic control of future spin valve structures and contribute to the development of spintronics in high-speed information processing and storage applications.
      通信作者: 芦闻天, wtlu@sxnu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 12404139)和山西省自然科学基金(批准号: 202203021212393)资助的课题.
      Corresponding author: LU Wentian, wtlu@sxnu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 12404139) and the Natural Science Foundation of Shanxi Province, China (Grant No. 202203021212393).
    [1]

    Wolf S A, Awschalom D D, Buhrman R A, Daughton J M, von Molnár V S, Roukes M L, Chtchelkanova A Y, Treger D M 2001 Science 294 1488Google Scholar

    [2]

    Žutić I, Fabian J, Sarma S D 2004 Rev. Mod. Phys. 76 323Google Scholar

    [3]

    Bader S D, Parkin S S P 2010 Annu. Rev. Condens. Matter Phys. 1 71Google Scholar

    [4]

    许涌, 张帆, 张晓强, 杜寅昌, 赵海慧, 聂天晓, 吴晓君, 赵巍胜 2022 69 200703Google Scholar

    Xu Y, Zhang F, Zhang X Q, Du Y C, Zhao H H, Nie T X, Wu X J, Zhao W S 2022 Acta Phys. Sin. 69 200703Google Scholar

    [5]

    Seifert T S, Cheng L, Wei Z X, Kampfrath T, Qi J B 2022 Appl. Phys. Lett. 120 180401Google Scholar

    [6]

    芦闻天, 袁喆 2022 中国科学: 物理学 力学 天文学 52 270007Google Scholar

    Lu W T, Yuan Z 2022 Sci. Sin. -Phys. Mech. Astron. 52 270007Google Scholar

    [7]

    杨旭, 冯红梅, 刘佳南, 张向群, 何为, 成昭华 2024 73 157501Google Scholar

    Yang X, Feng H M, Liu J N, Zhang X Q, He W, Cheng Z H 2024 Acta Phys. Sin. 73 157501Google Scholar

    [8]

    Kirilyuk A, Kimel A V, Rasing T 2010 Rev. Mod. Phys. 82 2731Google Scholar

    [9]

    李杭, 张新惠 2015 64 177503Google Scholar

    Li H, Zhang X H 2015 Acta Phys. Sin. 64 177503Google Scholar

    [10]

    Liu B, Xiao HJ, Weinelt M 2023 Sci. Adv. 9 eade0286Google Scholar

    [11]

    Jin Z M, Guo Y Y, Peng Y, Zhang Z Y, Pang J Y, Zhang Z Z, Liu F, Ye B, Jiang Y X, Ma G H, Zhang C, Balakin A V, Shkurinov A P, Zhu Y M, Zhuang S L 2023 Adv. Phys. Res. 2 2200049Google Scholar

    [12]

    Wang C T, Liu Y M 2020 Nano Converg. 7 35Google Scholar

    [13]

    Wu N, Zhang S J, Wang Y X, Meng S 2023 Prog. Surf. Sci. 98 100709Google Scholar

    [14]

    Wu X Q, Meng H, Zhang H Y, Xu N 2021 New J. Phys. 23 103007Google Scholar

    [15]

    Ghising P, Biswas C, Lee Y H 2023 Adv. Mater. 35 2209137Google Scholar

    [16]

    Gusev N A, Dgheparov D I, Pugach N G, Belotelov V I 2021 Appl. Phys. Lett. 118 232601Google Scholar

    [17]

    Beaurepaire E, Merle J C, Daunois A, Bigot J Y 1996 Phys. Rev. Lett. 76 4250Google Scholar

    [18]

    Stanciu C D, Hansteen F, Kimel A V, KirilyukA, Tsukamoto A, Itoh A, Rasing T 2007 Phys. Rev. Lett. 99 047601Google Scholar

    [19]

    Malinowski G, Dalla Longa F, Rietjens J H H, Paluskar P V, Huijink R, Swagten H J M, Koopmans B 2008 Nat. Phys. 4 855Google Scholar

    [20]

    Rudolf D, La-O-Vorakiat C, Battiato M, Adam R, Shaw J M, Turgut E, Maldonado P, Mathias S, Grychtol P, Nembach H T, Silva T J, Aeschlimann M, Kapteyn H C, Murnane M M, Schneider C M, Oppeneer P M 2012 Nat. Commun. 3 1037Google Scholar

    [21]

    Turgut E, La-o-Vorakiat C, Shaw J M, Grychtol P, Nembach H T, Rudolf D, Adam R, Aeschlimann M, Schneider C M, Silva T J, Murnane M M, Kapteyn H C, Mathias S 2013 Phys. Rev. Lett. 110 197201Google Scholar

    [22]

    He W, Zhu T, Zhang X Q, Yang H T, Cheng Z H 2013 Sci. Rep. 3 2883Google Scholar

    [23]

    Ji B Y, Jin Z M, Wu G J, Li J G, Wan C H, Han X F, Zhang Z Z, Ma G H, Peng Y, Zhu Y M 2023 Appl. Phys. Lett. 122 111104Google Scholar

    [24]

    Igarashi J, Zhang W, Remy Q, Díaz E, Lin J X, Hohlfeld J, Hehn M, Mangin S, Gorchon J, Malinowski G 2023 Nat. Mater. 22 725Google Scholar

    [25]

    Schellekens A J, De Vries N, Lucassen J, Koopmans B 2014 Phys. Rev. B 90 104429Google Scholar

    [26]

    Eschenlohr A, Persichetti L, Kachel T, Gabureac M, Gambardella P, Stamm C 2017 J. Phys. : Condens. Matter 29 384002Google Scholar

    [27]

    Stamm C, Murer C, Wörnle M S, Reid A H, Higley D J, Wandel S F, Schlotter W F, Gambardella P 2020 J. Appl. Phys. 127 223902Google Scholar

    [28]

    Battiato M, Carva K, Oppeneer P M 2010 Phys. Rev. Lett. 105 027203Google Scholar

    [29]

    Zhukov V P, Chulkov E V, Echenique P M 2005 Phys. Rev. B 72 155109Google Scholar

    [30]

    Zhukov V P, Chulkov E V, Echenique P M 2006 Phys. Rev. B 73 125105Google Scholar

    [31]

    Battiato M, Maldonado P, Oppeneer P M 2014 J. Appl. Phys. 115 172611Google Scholar

    [32]

    Battiato M, Carva K, Oppeneer P M 2012 Phys. Rev. B 86 024404Google Scholar

    [33]

    Lu W T, Yuan Z, Xu X H 2023 Sci. Chin. -Phys. Mech. Astron. 66 127511Google Scholar

    [34]

    Gorchon J, Mangin S, Hehn M, Malinowski G 2022 Appl. Phys. Lett. 121 012402Google Scholar

  • 图 1  飞秒激光脉冲诱导的Ni/Ru/Fe自旋阀结构中层间自旋输运示意图. 自旋极化热电子从Ni层通过Ru层转移至Fe层, 引起超快磁动力学. Ni层和Fe层的磁化方向可以为平行或反平行排列

    Fig. 1.  Schematic of ultrafast interlayer spin transport in a Ni/Ru/Fe trilayer structure induced by femtosecond laser pulses. Spin-polarized hot electrons transfer from the Ni layer through the Ru spacer to the Fe layer, triggering ultrafast magnetic dynamics. The magnetization directions of the Ni and Fe layers can be either parallel or antiparallel.

    图 2  (a)—(f)计算得到激光激发后的磁动力学, Ni层和Fe层初始的磁化方向为平行(红线)和反平行(蓝线)排列. (a)与(b), (c)与(d), (e)与(f)分别为间隔层dRu = 2, 1.5, 1 nm厚的结果

    Fig. 2.  (a)–(f) Calculated magnetic dynamics after laser excitation, with initial magnetization directions of the Ni and Fe layers aligned parallel (red line) and antiparallel (blue line). (a) and (b), (c) and (d), (e) and (f) show the results for spacer layer thicknesses of dRu = 2, 1.5, and 1 nm, respectively.

    图 3  (a) Ru层各位置自旋流js随时间的演化曲线, 以Ni/Ru界面处最大值进行归一化, 插图是以自旋流最大值对位置进行的指数拟合; (b)为图(a)中自旋流所对应的自旋极化率

    Fig. 3.  (a) Time evolution of the spin current js at various positions in the Ru layer, normalized to the maximum at the Ni/Ru interface. The inset shows an exponential fit of the spin current maximum values as a function of position. (b) The corresponding spin polarization of the spin current in panel (a).

    图 4  计算得到不同初始磁化方向下Fe层的磁动力学行为, 其中, 飞秒激光仅激发 Ni 层产生非平衡热电子, 浅灰色阴影表示激光脉冲的时间分布

    Fig. 4.  Calculated magnetic dynamics of Fe layer under different initial magnetization directions. The femtosecond laser excites only the Ni layer, generating nonequilibrium hot electrons. The light gray shading indicates the temporal profile of the laser pulse.

    Baidu
  • [1]

    Wolf S A, Awschalom D D, Buhrman R A, Daughton J M, von Molnár V S, Roukes M L, Chtchelkanova A Y, Treger D M 2001 Science 294 1488Google Scholar

    [2]

    Žutić I, Fabian J, Sarma S D 2004 Rev. Mod. Phys. 76 323Google Scholar

    [3]

    Bader S D, Parkin S S P 2010 Annu. Rev. Condens. Matter Phys. 1 71Google Scholar

    [4]

    许涌, 张帆, 张晓强, 杜寅昌, 赵海慧, 聂天晓, 吴晓君, 赵巍胜 2022 69 200703Google Scholar

    Xu Y, Zhang F, Zhang X Q, Du Y C, Zhao H H, Nie T X, Wu X J, Zhao W S 2022 Acta Phys. Sin. 69 200703Google Scholar

    [5]

    Seifert T S, Cheng L, Wei Z X, Kampfrath T, Qi J B 2022 Appl. Phys. Lett. 120 180401Google Scholar

    [6]

    芦闻天, 袁喆 2022 中国科学: 物理学 力学 天文学 52 270007Google Scholar

    Lu W T, Yuan Z 2022 Sci. Sin. -Phys. Mech. Astron. 52 270007Google Scholar

    [7]

    杨旭, 冯红梅, 刘佳南, 张向群, 何为, 成昭华 2024 73 157501Google Scholar

    Yang X, Feng H M, Liu J N, Zhang X Q, He W, Cheng Z H 2024 Acta Phys. Sin. 73 157501Google Scholar

    [8]

    Kirilyuk A, Kimel A V, Rasing T 2010 Rev. Mod. Phys. 82 2731Google Scholar

    [9]

    李杭, 张新惠 2015 64 177503Google Scholar

    Li H, Zhang X H 2015 Acta Phys. Sin. 64 177503Google Scholar

    [10]

    Liu B, Xiao HJ, Weinelt M 2023 Sci. Adv. 9 eade0286Google Scholar

    [11]

    Jin Z M, Guo Y Y, Peng Y, Zhang Z Y, Pang J Y, Zhang Z Z, Liu F, Ye B, Jiang Y X, Ma G H, Zhang C, Balakin A V, Shkurinov A P, Zhu Y M, Zhuang S L 2023 Adv. Phys. Res. 2 2200049Google Scholar

    [12]

    Wang C T, Liu Y M 2020 Nano Converg. 7 35Google Scholar

    [13]

    Wu N, Zhang S J, Wang Y X, Meng S 2023 Prog. Surf. Sci. 98 100709Google Scholar

    [14]

    Wu X Q, Meng H, Zhang H Y, Xu N 2021 New J. Phys. 23 103007Google Scholar

    [15]

    Ghising P, Biswas C, Lee Y H 2023 Adv. Mater. 35 2209137Google Scholar

    [16]

    Gusev N A, Dgheparov D I, Pugach N G, Belotelov V I 2021 Appl. Phys. Lett. 118 232601Google Scholar

    [17]

    Beaurepaire E, Merle J C, Daunois A, Bigot J Y 1996 Phys. Rev. Lett. 76 4250Google Scholar

    [18]

    Stanciu C D, Hansteen F, Kimel A V, KirilyukA, Tsukamoto A, Itoh A, Rasing T 2007 Phys. Rev. Lett. 99 047601Google Scholar

    [19]

    Malinowski G, Dalla Longa F, Rietjens J H H, Paluskar P V, Huijink R, Swagten H J M, Koopmans B 2008 Nat. Phys. 4 855Google Scholar

    [20]

    Rudolf D, La-O-Vorakiat C, Battiato M, Adam R, Shaw J M, Turgut E, Maldonado P, Mathias S, Grychtol P, Nembach H T, Silva T J, Aeschlimann M, Kapteyn H C, Murnane M M, Schneider C M, Oppeneer P M 2012 Nat. Commun. 3 1037Google Scholar

    [21]

    Turgut E, La-o-Vorakiat C, Shaw J M, Grychtol P, Nembach H T, Rudolf D, Adam R, Aeschlimann M, Schneider C M, Silva T J, Murnane M M, Kapteyn H C, Mathias S 2013 Phys. Rev. Lett. 110 197201Google Scholar

    [22]

    He W, Zhu T, Zhang X Q, Yang H T, Cheng Z H 2013 Sci. Rep. 3 2883Google Scholar

    [23]

    Ji B Y, Jin Z M, Wu G J, Li J G, Wan C H, Han X F, Zhang Z Z, Ma G H, Peng Y, Zhu Y M 2023 Appl. Phys. Lett. 122 111104Google Scholar

    [24]

    Igarashi J, Zhang W, Remy Q, Díaz E, Lin J X, Hohlfeld J, Hehn M, Mangin S, Gorchon J, Malinowski G 2023 Nat. Mater. 22 725Google Scholar

    [25]

    Schellekens A J, De Vries N, Lucassen J, Koopmans B 2014 Phys. Rev. B 90 104429Google Scholar

    [26]

    Eschenlohr A, Persichetti L, Kachel T, Gabureac M, Gambardella P, Stamm C 2017 J. Phys. : Condens. Matter 29 384002Google Scholar

    [27]

    Stamm C, Murer C, Wörnle M S, Reid A H, Higley D J, Wandel S F, Schlotter W F, Gambardella P 2020 J. Appl. Phys. 127 223902Google Scholar

    [28]

    Battiato M, Carva K, Oppeneer P M 2010 Phys. Rev. Lett. 105 027203Google Scholar

    [29]

    Zhukov V P, Chulkov E V, Echenique P M 2005 Phys. Rev. B 72 155109Google Scholar

    [30]

    Zhukov V P, Chulkov E V, Echenique P M 2006 Phys. Rev. B 73 125105Google Scholar

    [31]

    Battiato M, Maldonado P, Oppeneer P M 2014 J. Appl. Phys. 115 172611Google Scholar

    [32]

    Battiato M, Carva K, Oppeneer P M 2012 Phys. Rev. B 86 024404Google Scholar

    [33]

    Lu W T, Yuan Z, Xu X H 2023 Sci. Chin. -Phys. Mech. Astron. 66 127511Google Scholar

    [34]

    Gorchon J, Mangin S, Hehn M, Malinowski G 2022 Appl. Phys. Lett. 121 012402Google Scholar

  • [1] 赵晨蕊, 杨倩倩, 焦距, 唐政华, 秦明辉. 振荡磁场驱动亚铁磁畴壁动力学研究.  , 2025, 74(3): 038502. doi: 10.7498/aps.74.20241033
    [2] 熊宜浓, 吴闯文, 任传童, 孟德全, 陈是位, 梁世恒. 基于二维磁性材料的自旋轨道力矩研究进展.  , 2024, 73(1): 017502. doi: 10.7498/aps.73.20231244
    [3] 李春雷, 郑军, 王小明, 徐燕. 光场辐照下稀磁半导体/半导体超晶格中自旋电子输运特性研究.  , 2023, 72(22): 227201. doi: 10.7498/aps.72.20230935
    [4] 牛鹏斌, 罗洪刚. 马约拉纳费米子与杂质自旋相互作用的热偏压输运.  , 2021, 70(11): 117401. doi: 10.7498/aps.70.20202241
    [5] 赵巍胜, 黄阳棋, 张学莹, 康旺, 雷娜, 张有光. 斯格明子电子学的研究进展.  , 2018, 67(13): 131205. doi: 10.7498/aps.67.20180554
    [6] 盛宇, 张楠, 王开友, 马星桥. 自旋轨道矩调控的垂直磁各向异性四态存储器结构.  , 2018, 67(11): 117501. doi: 10.7498/aps.67.20180216
    [7] 黄耀清, 郝成红, 郑继明, 任兆玉. 硅团簇自旋电子器件的理论研究.  , 2013, 62(8): 083601. doi: 10.7498/aps.62.083601
    [8] 王瑞琴, 宫箭, 武建英, 陈军. 对称双势垒量子阱中自旋极化输运的时间特性.  , 2013, 62(8): 087303. doi: 10.7498/aps.62.087303
    [9] 安兴涛, 穆惠英, 咸立芬, 刘建军. 量子点双链中电子自旋极化输运性质.  , 2012, 61(15): 157201. doi: 10.7498/aps.61.157201
    [10] 谷晓芳, 钱轩, 姬扬, 陈林, 赵建华. (Ga,Mn)As中电流诱导自旋极化的磁光Kerr测量.  , 2012, 61(3): 037801. doi: 10.7498/aps.61.037801
    [11] 王辉, 胡贵超, 任俊峰. 扰动对有机磁体器件自旋极化输运特性的影响.  , 2011, 60(12): 127201. doi: 10.7498/aps.60.127201
    [12] 肖贤波, 李小毛, 陈宇光. 含stubs量子波导系统的电子自旋极化输运性质.  , 2009, 58(11): 7909-7913. doi: 10.7498/aps.58.7909
    [13] 姚建明, 杨翀. AB效应对自旋多端输运的影响.  , 2009, 58(5): 3390-3396. doi: 10.7498/aps.58.3390
    [14] 郑小宏, 戴振翔, 王贤龙, 曾雉. B与N掺杂对单层石墨纳米带自旋极化输运的影响.  , 2009, 58(13): 259-S265. doi: 10.7498/aps.58.259
    [15] 董正超. 磁性半导体/磁性d波超导结中的自旋极化输运.  , 2008, 57(9): 5937-5943. doi: 10.7498/aps.57.5937
    [16] 肖贤波, 李小毛, 周光辉. 电磁波辐照下量子线的电子自旋极化输运性质.  , 2007, 56(3): 1649-1654. doi: 10.7498/aps.56.1649
    [17] 任俊峰, 张玉滨, 解士杰. 铁磁/有机半导体/铁磁系统的电流自旋极化性质研究.  , 2007, 56(8): 4785-4790. doi: 10.7498/aps.56.4785
    [18] 任俊峰, 付吉永, 刘德胜, 解士杰. 自旋注入有机物的扩散理论.  , 2004, 53(11): 3814-3817. doi: 10.7498/aps.53.3814
    [19] 孙丰伟, 邓 莉, 寿 倩, 刘鲁宁, 文锦辉, 赖天树, 林位株. 量子阱中电子自旋注入及弛豫的飞秒光谱研究.  , 2004, 53(9): 3196-3199. doi: 10.7498/aps.53.3196
    [20] 秦建华, 郭 永, 陈信义, 顾秉林. 磁电垒结构中自旋极化输运性质的研究.  , 2003, 52(10): 2569-2575. doi: 10.7498/aps.52.2569
计量
  • 文章访问数:  564
  • PDF下载量:  21
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-12-19
  • 修回日期:  2025-01-14
  • 上网日期:  2025-01-17
  • 刊出日期:  2025-03-20

/

返回文章
返回
Baidu
map