搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

两个系列铍反射层临界基准实验的一致性分析与核数据检验

陈胜利 王天翔

引用本文:
Citation:

两个系列铍反射层临界基准实验的一致性分析与核数据检验

陈胜利, 王天翔
cstr: 32037.14.aps.74.20241685

Consistency analysis and nuclear data validation for two series of beryllium reflector critical benchmark experiments

CHEN Shengli, WANG Tianxiang
cstr: 32037.14.aps.74.20241685
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 铍金属与氧化铍都是重要核材料, 铍的中子核反应数据对核能研发具有重大意义. 宏观检验是核数据评价过程的重要环节, 对确保核数据的可靠性与精确度至关重要. 临界基准实验是目前核数据宏观检验最重要的标准. 但此前研究发现, 两个高度相似的铍反射层临界基准实验系列HMF-058与HMF-066在检验铍的中子反应数据时给出了矛盾的结论, 不能指出铍相关数据的改进方向, 导致这两个系列共14个实验无法被用于高精度的核数据检验. 出射中子角分布是反应堆物理计算中的关键物理量, 但核数据宏观检验中对其的关注度较低. 本文通过改进铍(n, n)与(n, 2n)反应的出射中子角分布数据提升了两个系列的理论计算与实验测量值的一致性. 基于改进的核数据, 所有计算与实验测量值的偏差均在1σ实验不确定度范围内, 因此无法在此不确定度内拒绝两个系列实验的一致性. 结合最新的整套铀核数据, 两者的一致性还有少许提升. 若要得出两个系列期望值系统性差异的结论, 仍需降低实验不确定度或开展更高精度的实验.
    Beryllium metal and beryllium oxide are important nuclear materials, with neutron-induced nuclear reaction data on beryllium playing a crucial role in nuclear energy research and development. Macroscopic validation is an essential step in the nuclear data evaluation process, providing a means to assess the reliability and accuracy of such data. Critical benchmark experiments serve as the most important references for this validation. However, discrepancies have been observed in two closely related series of beryllium-reflector fast-spectrum critical benchmark experiments, HMF-058 and HMF-066, which are widely used in current nuclear data validation. A previous systematic study indicates that these two series of experiments reache contradictory conclusions in validating the neutron-induced nuclear reaction data of beryllium, creating ambiguity in improving beryllium nuclear data. As a result, the total of 14 experiments in these two series cannot currently support high-accuracy validation of nuclear data. Although most researches on nuclear data validation and adjustment mainly focus on cross sections, the angular distribution of emitted neutrons is a key factor in reactor physics calculations. In this work, we address these inconsistencies by improving the secondary angular distributions of the (n, n) and (n, 2n) reactions of beryllium, thereby making the theoretical calculations (C) and experimental results (E) of these two series more consistent, and reducing the cumulative χ2 value from 7.58 using the ENDF/B-VII.1 evaluation to 4.52. All calculations based on the improved nuclear data agree with the experimental measurements within 1σ experimental uncertainty. With these enhancements, the consistency between the HMF-058 and HMF-066 series cannot be rejected within the 1σ experimental uncertainty. Based on the latest comprehensive evaluation of uranium nuclear data, this consistency is slightly improved, and the cumulative χ2 value decreases to 4.36 once again. Despite these advances, systematic differences in the expected values of C/E between the two series still exist. The C/E values of the HMF-066 series are generally 230–330 pcm lower than those of the HMF-058 series, comparable to their experimental uncertainties of 200–400 pcm. Therefore, drawing a definitive conclusion about this systematic difference remains challenging. If the current improvement of differential nuclear data based on experimental data of 9Be is accurate, then the HMF-058 series experiments seem to be more reliable than the HMF-066 series. Ultimately, to achieve this goal, either reducing experimental uncertainty or designing and executing higher-precision integral experiments is required.
      通信作者: 陈胜利, chenshli23@mail.sysu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 12205390)和广东省基础与应用基础研究基金(批准号: 2023A1515010800)资助的课题.
      Corresponding author: CHEN Shengli, chenshli23@mail.sysu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 12205390) and the Basic and Applied Basic Research Foundation of Guangdong Province, China (Grant No. 2023A1515010800).
    [1]

    Hou M D, Zhou X W, Liu B 2022 Nucl. Eng. Technol. 54 4393Google Scholar

    [2]

    Chen S L, Yuan C X 2020 Nucl. Mater. Energy 22 100728Google Scholar

    [3]

    Chen S L, He X J, Yuan C X 2020 Nucl. Sci. Tech. 31 32Google Scholar

    [4]

    Brown D A, Chadwick M B, Capote R, et al. 2018 Nucl. Data Sheets 148 1Google Scholar

    [5]

    Plompen A J M, Cabellos O, De Saint Jean C, et al. 2020 Eur. Phys. J. A 56 181Google Scholar

    [6]

    Iwamoto O, Iwamoto N, Kunieda S, et al. 2023 J. Nucl. Sci. Technol. 60 1Google Scholar

    [7]

    葛智刚, 陈永静 2020 原子核物理评论 37 309Google Scholar

    Ge Z G, Chen Y G 2020 Nucl. Phys. Rev. 37 309Google Scholar

    [8]

    Ge Z, Xu R, Wu H, et al. 2020 EPJ Web Conf. 239 09001Google Scholar

    [9]

    Zabrodskaya S V, Ignatyuk A V, Koshcheev V N, Manochin V N, Nikolaev M N, Pronyaev V G 2007 RUSFOND-Russian National Library of Evaluated Neutron Data https://vant.ippe.ru/en/year2007/neutron-constants/774-1.html

    [10]

    Briggs J B, Scott L, Nouri A 2003 Nucl. Sci. Eng. 145 1Google Scholar

    [11]

    吴海成, 张环宇 2024 原子能科学技术 58 1271

    Wu H C, Zhang H Y 2024 At. Energy Sci. Tech. 58 1271

    [12]

    胡泽华, 尹延朋, 叶涛 2016 65 212801Google Scholar

    Hu Z H, Yin Y P, Ye T 2016 Acta Phys. Sin. 65 212801Google Scholar

    [13]

    NEA 2024 “ICSBEP Handbook 2022-23”, International Criticality Safety Benchmark Evaluation Project Handbook (Database) https://www.oecd-nea.org/jcms/pl_20291 [2024-11-27]

    [14]

    Romano P K, Horelik N E, Herman B R, Nelson A G, Forget B, Smith K 2015 Ann. Nucl. Energy 82 90Google Scholar

    [15]

    Chen S L, Vandermeersch E, Tamagno P, Bernard D, Noguere G, Blaise P 2021 Ann. Nucl. Energy 163 108553Google Scholar

    [16]

    Otuka N, Dupont E, Semkova V, et al. 2014 Nucl. Data Sheets 120 272Google Scholar

    [17]

    Zerkin V V, Pritychenko B 2018 Nucl. Instrum. Methods Phys. Res. A 888 31Google Scholar

    [18]

    Shibata K, Iwamoto O, Nakagawa T, et al. 2011 J. Nucl. Sci. Technol. 48 1Google Scholar

    [19]

    Chadwick M B, Herman M, Obložinský P, et al. 2011 Nucl. Data Sheets 112 2887Google Scholar

    [20]

    Wang T X, Chen S L, Xu S Q, Li Z, Chen S Y, Wu X F 2023 Ann. Nucl. Energy 192 110017Google Scholar

    [21]

    Chadwick M B, Capote R, Trkov A, et al. 2018 Nucl. Data Sheets 148 189Google Scholar

    [22]

    Capote R, Trkov A, Sin M, et al. 2018 Nucl. Data Sheets 148 254Google Scholar

    [23]

    Carlson A D, Pronyaev V G, Capote R, et al. 2018 Nucl. Data Sheets 148 143Google Scholar

    [24]

    Broadhead B L, Rearden B T, Hopper C M, Wagschal J J, Parks C V 2004 Nucl. Sci. Eng. 146 340Google Scholar

    [25]

    Nouri A, Nagel P, Briggs J B, Ivanova T 2003 Nucl. Sci. Eng. 145 11Google Scholar

    [26]

    Wang T X, Xu S Q, Li Z, Chen S L 2025 Ann. Nucl. Energy 210 110851Google Scholar

    [27]

    Cabellos O, Hursin M, Palmiotti P 2023 EPJ Web Conf. 284 14012Google Scholar

  • 图 1  HMF-058-002与HMF-066-007实验的示意图(中心小球为不随实验改变的铍球-镍层)

    Fig. 1.  Schematic of HMF-058-002 and HMF-066-007 experiments (the sphere in the core represents Be core-Ni layer that keeps unchanged in different experiments).

    图 2  HMF-058与HMF-066系列的keff实验结果以及不确定度

    Fig. 2.  Experimental measurements and uncertainties of keff for HMF-058 and HMF-066 series experiments.

    图 3  9Be(n, n)与(n, 2n)反应的出射中子角分布

    Fig. 3.  Angular distributions of outgoing neutrons for 9Be(n, n) and (n, 2n) reactions.

    图 4  (a) 9Be的中子吸收截面; (b)热中子吸收截面与实验值的比较[20]

    Fig. 4.  (a) Neutron capture cross section of 9Be; (b) the comparison with experimental data for thermal neutron[20].

    图 5  HMF-058系列先前的keff计算与实验结果比值(C/E )[12]以及改进后的结果

    Fig. 5.  Ratio of calculation to experimental measurement (C/E ) of keff for HMF-058 series: previous [12] and improved results.

    图 6  HMF-066系列先前的keff计算与实验比值结果(C/E )[12]以及改进后的结果

    Fig. 6.  Ratio of calculation to experimental measurement (C/E ) of keff for HMF-066 series: previous [12] and improved results.

    图 7  高度相似实验的keffC/E结果比较

    Fig. 7.  Comparison of C/E for keff of highly similar experiments.

    Baidu
  • [1]

    Hou M D, Zhou X W, Liu B 2022 Nucl. Eng. Technol. 54 4393Google Scholar

    [2]

    Chen S L, Yuan C X 2020 Nucl. Mater. Energy 22 100728Google Scholar

    [3]

    Chen S L, He X J, Yuan C X 2020 Nucl. Sci. Tech. 31 32Google Scholar

    [4]

    Brown D A, Chadwick M B, Capote R, et al. 2018 Nucl. Data Sheets 148 1Google Scholar

    [5]

    Plompen A J M, Cabellos O, De Saint Jean C, et al. 2020 Eur. Phys. J. A 56 181Google Scholar

    [6]

    Iwamoto O, Iwamoto N, Kunieda S, et al. 2023 J. Nucl. Sci. Technol. 60 1Google Scholar

    [7]

    葛智刚, 陈永静 2020 原子核物理评论 37 309Google Scholar

    Ge Z G, Chen Y G 2020 Nucl. Phys. Rev. 37 309Google Scholar

    [8]

    Ge Z, Xu R, Wu H, et al. 2020 EPJ Web Conf. 239 09001Google Scholar

    [9]

    Zabrodskaya S V, Ignatyuk A V, Koshcheev V N, Manochin V N, Nikolaev M N, Pronyaev V G 2007 RUSFOND-Russian National Library of Evaluated Neutron Data https://vant.ippe.ru/en/year2007/neutron-constants/774-1.html

    [10]

    Briggs J B, Scott L, Nouri A 2003 Nucl. Sci. Eng. 145 1Google Scholar

    [11]

    吴海成, 张环宇 2024 原子能科学技术 58 1271

    Wu H C, Zhang H Y 2024 At. Energy Sci. Tech. 58 1271

    [12]

    胡泽华, 尹延朋, 叶涛 2016 65 212801Google Scholar

    Hu Z H, Yin Y P, Ye T 2016 Acta Phys. Sin. 65 212801Google Scholar

    [13]

    NEA 2024 “ICSBEP Handbook 2022-23”, International Criticality Safety Benchmark Evaluation Project Handbook (Database) https://www.oecd-nea.org/jcms/pl_20291 [2024-11-27]

    [14]

    Romano P K, Horelik N E, Herman B R, Nelson A G, Forget B, Smith K 2015 Ann. Nucl. Energy 82 90Google Scholar

    [15]

    Chen S L, Vandermeersch E, Tamagno P, Bernard D, Noguere G, Blaise P 2021 Ann. Nucl. Energy 163 108553Google Scholar

    [16]

    Otuka N, Dupont E, Semkova V, et al. 2014 Nucl. Data Sheets 120 272Google Scholar

    [17]

    Zerkin V V, Pritychenko B 2018 Nucl. Instrum. Methods Phys. Res. A 888 31Google Scholar

    [18]

    Shibata K, Iwamoto O, Nakagawa T, et al. 2011 J. Nucl. Sci. Technol. 48 1Google Scholar

    [19]

    Chadwick M B, Herman M, Obložinský P, et al. 2011 Nucl. Data Sheets 112 2887Google Scholar

    [20]

    Wang T X, Chen S L, Xu S Q, Li Z, Chen S Y, Wu X F 2023 Ann. Nucl. Energy 192 110017Google Scholar

    [21]

    Chadwick M B, Capote R, Trkov A, et al. 2018 Nucl. Data Sheets 148 189Google Scholar

    [22]

    Capote R, Trkov A, Sin M, et al. 2018 Nucl. Data Sheets 148 254Google Scholar

    [23]

    Carlson A D, Pronyaev V G, Capote R, et al. 2018 Nucl. Data Sheets 148 143Google Scholar

    [24]

    Broadhead B L, Rearden B T, Hopper C M, Wagschal J J, Parks C V 2004 Nucl. Sci. Eng. 146 340Google Scholar

    [25]

    Nouri A, Nagel P, Briggs J B, Ivanova T 2003 Nucl. Sci. Eng. 145 11Google Scholar

    [26]

    Wang T X, Xu S Q, Li Z, Chen S L 2025 Ann. Nucl. Energy 210 110851Google Scholar

    [27]

    Cabellos O, Hursin M, Palmiotti P 2023 EPJ Web Conf. 284 14012Google Scholar

  • [1] 谢金辰, 陶曦, 续瑞瑞, 田源, 邢康, 葛智刚, 牛一斐. 基于变分自编码器的伽马单中子出射反应截面实验数据离群点研究.  , 2025, 74(8): . doi: 10.7498/aps.74.20241775
    [2] 张鑫源, 胡以华, 谌诗洋, 方佳节, 王一程, 刘一凡, 韩飞. 公里级激光反射层析实验和碎片质心估计.  , 2022, 71(11): 114205. doi: 10.7498/aps.71.20220205
    [3] 徐佳伟, 许传喜, 张瑞田, 朱小龙, 冯文天, 赵冬梅, 梁贵云, 郭大龙, 高永, 张少锋, 苏茂根, 马新文. 态选择电荷交换实验测量以及对天体物理软X射线发射模型的检验.  , 2021, 70(8): 080702. doi: 10.7498/aps.70.20201685
    [4] 谭文海, 王建波, 邵成刚, 涂良成, 杨山清, 罗鹏顺, 罗俊. 近距离牛顿反平方定律实验检验进展.  , 2018, 67(16): 160401. doi: 10.7498/aps.67.20180636
    [5] 胡泽华, 尹延朋, 叶涛. 铍反射层临界基准实验分析.  , 2016, 65(21): 212801. doi: 10.7498/aps.65.212801
    [6] 侯凤贞, 黄晓林, 庄建军, 霍铖宇, 宁新宝. 多尺度策略和替代数据检验——HRV时间不可逆性分析的两个要素.  , 2012, 61(22): 220507. doi: 10.7498/aps.61.220507
    [7] 刘杰, 刘邦武, 夏洋, 李超波, 刘肃. 等离子体浸没离子注入制备黑硅抗反射层及其光学特性研究.  , 2012, 61(14): 148102. doi: 10.7498/aps.61.148102
    [8] 刘丰, 胡晓堃, 栗岩锋, 邢岐荣, 胡明列, 柴路, 王清月. 刻划微棱锥抗反射层的GaP太赫兹波发射器.  , 2012, 61(4): 040703. doi: 10.7498/aps.61.040703
    [9] 支启军. N=28丰中子核的形变和形状共存研究.  , 2011, 60(5): 052101. doi: 10.7498/aps.60.052101
    [10] 王兆军, 吕国梁, 朱春花, 张军. 中子星中简并电子气体的临界磁化.  , 2011, 60(4): 049702. doi: 10.7498/aps.60.049702
    [11] 丁斌刚, 张大立, 鲁定辉. 14O核中子闭壳效应的探讨.  , 2010, 59(5): 3142-3146. doi: 10.7498/aps.59.3142
    [12] 贺正冰, 马寿峰, 贺国光. 基于仿真实验的城市交通系统宏观现象研究.  , 2010, 59(1): 171-177. doi: 10.7498/aps.59.171
    [13] 胡正国, 王 猛, 徐瑚珊, 孙志宇, 王建松, 肖国青, 詹文龙, 肖志刚, 毛瑞士, 张宏斌, 赵铁成, 徐治国, 王 玥, 陈若富, 黄天衡, 高 辉, 贾 飞, 付 芬, 高 启, 韩建龙. 丰中子奇异核17B的实验研究.  , 2008, 57(5): 2866-2870. doi: 10.7498/aps.57.2866
    [14] 刘建业, 左 维, 李希国, 邢永忠. 中子晕核引起核反应中的同位旋效应.  , 2007, 56(3): 1339-1346. doi: 10.7498/aps.56.1339
    [15] 乔秀梅, 张国平, 张覃鑫. 模拟卢瑟福实验室的实验以检验理论模拟.  , 2006, 55(3): 1181-1185. doi: 10.7498/aps.55.1181
    [16] 刘耀宗, 温熙森, 胡茑庆. 线性非高斯序列的替代数据检验新方法.  , 2001, 50(7): 1241-1247. doi: 10.7498/aps.50.1241
    [17] 刘耀宗, 温熙森, 胡茑庆. 非最小相位线性非高斯序列的替代数据检验.  , 2001, 50(4): 633-637. doi: 10.7498/aps.50.633
    [18] 马余刚. 核破裂中的粒子发射和临界涨落.  , 1999, 48(10): 1839-1844. doi: 10.7498/aps.48.1839
    [19] 任中洲, 徐躬耦. 中子滴线附近核异常大半径的解释.  , 1991, 40(8): 1229-1235. doi: 10.7498/aps.40.1229
    [20] 何祚庥, 周光召. 检验π介子散射过程是否存在p态共振的一个实验方法的建议.  , 1961, 17(3): 133-134. doi: 10.7498/aps.17.133
计量
  • 文章访问数:  343
  • PDF下载量:  10
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-12-05
  • 修回日期:  2025-01-20
  • 上网日期:  2025-02-09
  • 刊出日期:  2025-03-20

/

返回文章
返回
Baidu
map