搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

铍反射层临界基准实验分析

胡泽华 尹延朋 叶涛

引用本文:
Citation:

铍反射层临界基准实验分析

胡泽华, 尹延朋, 叶涛

Analysis of criticality benchmark experiments with beryllium reflectors

Hu Ze-Hua, Yin Yan-Peng, Ye Tao
PDF
导出引用
  • 作为重要的核材料,铍的中子核反应数据的可靠性对核工程有重要的意义.临界积分实验是检验核数据可靠性乃至指明核数据改进方向的基本手段.两个系列的铍金属反射层临界积分实验HMF058和HMF066,在铍的中子核数据检验中给出了明显矛盾的结论,使得这些积分实验无法评价核数据的品质,更不能指出明确的数据改进方向.本文提出利用相似性理论分析临界积分实验自洽性的方法,主要采用基于灵敏度系数的相似性指标,对两系列实验进行相似度分析.分析结果显示,对于两系列中高度相似的实验,积分量模拟结果与实验值的偏差存在显著的差异.数值模拟与理论分析都表明,无法通过改进核数据来同时改进HMF058和HMF066的模拟计算与实验的符合.据此,推论HMF058和(或)HMF066基准临界积分实验的测量或评价可能存在系统性的疏失,有必要对实验进行细致的再评价,或开展可靠的新积分实验以排除不可靠的实验,避免误导核数据的检验.
    Beryllium is an important nuclear material, and the reliability of the data for neutron-induced nuclear reactions of beryllium is of significant importance for nuclear engineering. The evaluated nuclear data for beryllium have been improving from ENDF/B-VI to ENDF/B-VⅡ.0 and then to ENDF/B-VⅡ.1. The comparisons between the calculated and experimental results of the criticality benchmark experiments are the essential means to test the reliability of nuclear data and indicate the direction of the improvement of nuclear data. There are several series of criticality benchmark experiments with beryllium reflector available for testing beryllium nuclear data. However, the calculated results are not consistent across these benchmarks. Two series of these benchmarks that are similar to each other, namely HMF058 and HMF066, are selected for discussion. HMF058 and HMF066 are both highly enriched metal fast benchmarks, with five cases of experiments in HMF058 benchmark and nine in HMF066. With ENDF/B-VⅡ.1 cross sections, a clearly increasing C/E keff bias is observed with increasing beryllium reflector thickness for the five cases in HMF058 benchmark, while using ENDF/B-VⅡ.0 cross sections, all the C/E values for keff remain within the experimental uncertainty. However, HMF066 are calculated very well with ENDF/B-VⅡ.1 cross sections, but a bias of about 500 pcm is observed with ENDF/B-VⅡ.0 data. These results are particularly puzzling since there is little difference between the configurations of HMF058 and HMF066, so the quality of beryllium nuclear data cannot be evaluated and the direction for improvement cannot be figured out either. The similarity method, based on the use of sensitivity coefficients calculated by sensitivity and uncertainty code SURE, is used to analyze the similarity between two series of benchmark experiments. First, the neutronics similarity index between each pair of the total of fourteen cases of experiments from the two benchmarks is calculated. Then, the most similar experiments from HMF066 to each case of the five experiments from HMF058 are selected by similarity index, and the experiments are grouped into five similarity suites, each with one from HMF058 and the others from HMF066. The experiments in the same similarity suite are highly similar to each other on neutronics. In a similarity suite, the deviations of calculated results and experimental values are disagreed for experiments from different series, but the deviations agree with each other for experiments from the same series. This shows that the agreement between the calculated results and experimental values cannot be improved by revising the nuclear data. It is necessary to carry out the detailed reevaluation of the benchmark experiments, or to develop reliable new integral experiments to exclude unreliable experiments, in order to avoid the misleading of the nuclear data testing.
      通信作者: 尹延朋, 149913022@qq.com
    • 基金项目: 中国工程物理研究院中子物理学重点实验室基金(批准号:2013AA02)、能源局06重大专项(批准号:2015ZX06002008)和国家磁约束核聚变能研究专项(批准号:2015GB108002)资助的课题.
      Corresponding author: Yin Yan-Peng, 149913022@qq.com
    • Funds: Project supported by the Foundation of Key Laboratory of Neutron Physics of China Academy of Engineering Physics(Grant No. 2013AA02), the Sub-item of Special Projects of the National Energy Bureau, China(Grant No. 2015ZX06002008), and the National Magnetic Confinement Fusion Energy Research Project, China(Grant No. 2015GB108002).
    [1]

    Trkov A, Herman M, Brown D A 2012 ENDF-6 Formats Manual (USA:National Nuclear Data Center Brookhaven National Laboratory) Report BNL-90365-2009 Rev. 2(CSEWG Document ENDF-102)

    [2]

    Shibata K, Iwamoto O, Nakagawa T, Iwamoto N, Ichihara A, Kunieda S, Chiba S, Furutaka K, Otuka N, Ohsawa T, Murata T, Matsunobu H, Zukeran A, Kamada S, Katakura J 2011 J. Nucl. Sci. Technol. 48 1

    [3]

    Koning A J 2011 J. Korean Phys. Soc. 59 1057

    [4]

    Ge Z G, Zhao Z X, Xia H H 2011 J. Korean Phys. Soc. 59 1052

    [5]

    Zabrodskaya S V, Ignatyuk A V, Koscheev V N 2007 VANT, Nuclear Constants 1-2 3

    [6]

    Chadwick M B, Herman M, Oblozinsky P, Dunn M E, Danon Y, Kahler A C, Smith D L, Pritychenko B, Arbanas G, Arcilla R, Brewer R, Brown D A, Capote R, Carlson A D, Cho Y S, Derrien H, Guber K, Hale G M, Hoblit S, Holloway S, Johnson T D, Kawano T, Kiedrowski B C, Kim H, Kunieda S, Larson N M, Leal L, Lestone J P, Little R C, McCutchan E A, MacFarlane R E, MacInnes M, Mattoon C M, McKnight R D, Mughabghab S F, Nobre G P A, Palmiotti G, Palumbo A, Pigni M T, Pronyaev V G, Sayer R O, Sonzogni A A, Summers N C, Talou P, Thompson I J, Trkov A, Vogt R L, van der Marck S C, Wallner A, White M C, Wiarda D, Young P G 2011 Nucl. Data Sheets 112 2887

    [7]

    Chadwick M B, Oblozinsky P, Herman M, M Greene N, McKnight R D, Smith D L, Young P G, MacFarlane R E, Hale G M, Frankle S C, Kahler A C, Kawano T, Little R C, Madland D G, Moller P, Mosteller R D, Page P R, Talou P, Trellue H, White M C, Wilson W B, Arcilla R, Dunford C L, Mughabghab S F, Pritychenko B, Rochman D, Sonzogni A A, Lubitz C R, Trumbull T H, Weinman J P, Br D A, Cullen D E, Heinrichs D P, McNabb D P, Derrien H, Dunn M E, Larson N M, Leal L C, Carlson A D, Block R C, Briggs J B, Cheng E T, Huria H C, Zerkle M L, Kozier K S, Courcelle A, Pronyaev V, van der Marck S C 2006 Nucl. Data Sheets 107 2931

    [8]

    Organisation for Economic Co-operation and Development Nuclear Energy Agency 1999 International Handbook of Evaluated Criticality Safety Benchmark Experiments NEA/NSC/DOC(95)03

    [9]

    Hu Z H, Wang J, Sun W L, Li M S 2013 Atom. Energy Sci. Technol. 47 25(in Chinese)[胡泽华, 王佳, 孙伟力, 李茂生2013原子能科学技术47 25]

    [10]

    X-5 Monte Carlo Team 2003 MCNP–A General Monte Carlo N-Particle Transport Code, Version 5, Volume 1:Overview and Theory (USA:Los Alamos National Laboratory) LA-UR-03-1987

    [11]

    Broadhead B L, Rearden B T, Hopper C M, Wagschal J J, Parks C V 2004 Nucl. Sci. Eng. 146 340

  • [1]

    Trkov A, Herman M, Brown D A 2012 ENDF-6 Formats Manual (USA:National Nuclear Data Center Brookhaven National Laboratory) Report BNL-90365-2009 Rev. 2(CSEWG Document ENDF-102)

    [2]

    Shibata K, Iwamoto O, Nakagawa T, Iwamoto N, Ichihara A, Kunieda S, Chiba S, Furutaka K, Otuka N, Ohsawa T, Murata T, Matsunobu H, Zukeran A, Kamada S, Katakura J 2011 J. Nucl. Sci. Technol. 48 1

    [3]

    Koning A J 2011 J. Korean Phys. Soc. 59 1057

    [4]

    Ge Z G, Zhao Z X, Xia H H 2011 J. Korean Phys. Soc. 59 1052

    [5]

    Zabrodskaya S V, Ignatyuk A V, Koscheev V N 2007 VANT, Nuclear Constants 1-2 3

    [6]

    Chadwick M B, Herman M, Oblozinsky P, Dunn M E, Danon Y, Kahler A C, Smith D L, Pritychenko B, Arbanas G, Arcilla R, Brewer R, Brown D A, Capote R, Carlson A D, Cho Y S, Derrien H, Guber K, Hale G M, Hoblit S, Holloway S, Johnson T D, Kawano T, Kiedrowski B C, Kim H, Kunieda S, Larson N M, Leal L, Lestone J P, Little R C, McCutchan E A, MacFarlane R E, MacInnes M, Mattoon C M, McKnight R D, Mughabghab S F, Nobre G P A, Palmiotti G, Palumbo A, Pigni M T, Pronyaev V G, Sayer R O, Sonzogni A A, Summers N C, Talou P, Thompson I J, Trkov A, Vogt R L, van der Marck S C, Wallner A, White M C, Wiarda D, Young P G 2011 Nucl. Data Sheets 112 2887

    [7]

    Chadwick M B, Oblozinsky P, Herman M, M Greene N, McKnight R D, Smith D L, Young P G, MacFarlane R E, Hale G M, Frankle S C, Kahler A C, Kawano T, Little R C, Madland D G, Moller P, Mosteller R D, Page P R, Talou P, Trellue H, White M C, Wilson W B, Arcilla R, Dunford C L, Mughabghab S F, Pritychenko B, Rochman D, Sonzogni A A, Lubitz C R, Trumbull T H, Weinman J P, Br D A, Cullen D E, Heinrichs D P, McNabb D P, Derrien H, Dunn M E, Larson N M, Leal L C, Carlson A D, Block R C, Briggs J B, Cheng E T, Huria H C, Zerkle M L, Kozier K S, Courcelle A, Pronyaev V, van der Marck S C 2006 Nucl. Data Sheets 107 2931

    [8]

    Organisation for Economic Co-operation and Development Nuclear Energy Agency 1999 International Handbook of Evaluated Criticality Safety Benchmark Experiments NEA/NSC/DOC(95)03

    [9]

    Hu Z H, Wang J, Sun W L, Li M S 2013 Atom. Energy Sci. Technol. 47 25(in Chinese)[胡泽华, 王佳, 孙伟力, 李茂生2013原子能科学技术47 25]

    [10]

    X-5 Monte Carlo Team 2003 MCNP–A General Monte Carlo N-Particle Transport Code, Version 5, Volume 1:Overview and Theory (USA:Los Alamos National Laboratory) LA-UR-03-1987

    [11]

    Broadhead B L, Rearden B T, Hopper C M, Wagschal J J, Parks C V 2004 Nucl. Sci. Eng. 146 340

  • [1] 陈浩宇, 徐涛, 刘闯, 张子柯, 詹秀秀. 基于高阶信息的网络相似性比较方法.  , 2024, 73(3): 038901. doi: 10.7498/aps.73.20231096
    [2] 杨剑楠, 刘建国, 郭强. 基于层间相似性的时序网络节点重要性研究.  , 2018, 67(4): 048901. doi: 10.7498/aps.67.20172255
    [3] 陈燕红, 程锐, 张敏, 周贤明, 赵永涛, 王瑜玉, 雷瑜, 麻鹏鹏, 王昭, 任洁茹, 马新文, 肖国青. 利用质子能损检测气体靶区有效靶原子密度的实验研究.  , 2018, 67(4): 044101. doi: 10.7498/aps.67.20172028
    [4] 马平, 石安华, 杨益兼, 于哲峰, 梁世昌, 黄洁. 高速模型尾迹流场及其电磁散射特性相似性实验研究.  , 2017, 66(10): 102401. doi: 10.7498/aps.66.102401
    [5] 鲁昌兵, 许鹏, 鲍杰, 王朝辉, 张凯, 任杰, 刘艳芬. 快中子照相模拟分析与实验验证.  , 2015, 64(19): 198702. doi: 10.7498/aps.64.198702
    [6] 圣宗强, 舒良萍, 孟影, 胡继刚, 钱建发. 有效液滴模型对超铅区结团放射性的研究.  , 2014, 63(16): 162302. doi: 10.7498/aps.63.162302
    [7] 王兆军, 吕国梁, 朱春花, 张军. 中子星中简并电子气体的临界磁化.  , 2011, 60(4): 049702. doi: 10.7498/aps.60.049702
    [8] 支启军. N=28丰中子核的形变和形状共存研究.  , 2011, 60(5): 052101. doi: 10.7498/aps.60.052101
    [9] 丁斌刚, 张大立, 鲁定辉. 14O核中子闭壳效应的探讨.  , 2010, 59(5): 3142-3146. doi: 10.7498/aps.59.3142
    [10] 胡正国, 王 猛, 徐瑚珊, 孙志宇, 王建松, 肖国青, 詹文龙, 肖志刚, 毛瑞士, 张宏斌, 赵铁成, 徐治国, 王 玥, 陈若富, 黄天衡, 高 辉, 贾 飞, 付 芬, 高 启, 韩建龙. 丰中子奇异核17B的实验研究.  , 2008, 57(5): 2866-2870. doi: 10.7498/aps.57.2866
    [11] 赵兴涛, 侯蓝田, 刘兆伦, 王 伟, 魏红彦, 马景瑞. 改进的全矢量有效折射率方法分析光子晶体光纤的色散特性.  , 2007, 56(4): 2275-2280. doi: 10.7498/aps.56.2275
    [12] 刘建业, 左 维, 李希国, 邢永忠. 中子晕核引起核反应中的同位旋效应.  , 2007, 56(3): 1339-1346. doi: 10.7498/aps.56.1339
    [13] 左 维, 陆广成. 非对称核物质中质子和中子的1S0态超流性.  , 2007, 56(7): 3873-3879. doi: 10.7498/aps.56.3873
    [14] 龚志强, 封国林. 基于非线性分析方法的多种代用资料的相似性研究.  , 2007, 56(6): 3619-3629. doi: 10.7498/aps.56.3619
    [15] 童永在, 王西安, 余本海, 胡雪惠. 电光效应的自相似性.  , 2006, 55(12): 6667-6672. doi: 10.7498/aps.55.6667
    [16] 张晓明, 彭建华, 张入元. 利用线性可逆变换增强延迟反馈方法控制混沌的有效性.  , 2005, 54(7): 3019-3026. doi: 10.7498/aps.54.3019
    [17] 史庆藩, 李粮生, 张 梅. “禁忌”3-磁振子相互作用哈密顿项的有效性分析.  , 2004, 53(11): 3916-3919. doi: 10.7498/aps.53.3916
    [18] 任中洲, 徐躬耦. 中子滴线附近核异常大半径的解释.  , 1991, 40(8): 1229-1235. doi: 10.7498/aps.40.1229
    [19] 翁征宇, 吴杭生. 归一有效声子谱谱形对超导临界温度Tc的影响.  , 1988, 37(2): 239-247. doi: 10.7498/aps.37.239
    [20] 李宏成. 有效声子谱对超导体临界温度的影响.  , 1979, 28(1): 104-116. doi: 10.7498/aps.28.104
计量
  • 文章访问数:  5777
  • PDF下载量:  176
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-01-19
  • 修回日期:  2016-08-08
  • 刊出日期:  2016-11-05

/

返回文章
返回
Baidu
map