搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

碱金属原子气室中自旋极化态的高时空分辨调制方法

马东辉 贺欣欣 滑泽宇 李艳君 董海峰 温焕飞 菅原康弘 唐军 马宗敏 刘俊

引用本文:
Citation:

碱金属原子气室中自旋极化态的高时空分辨调制方法

马东辉, 贺欣欣, 滑泽宇, 李艳君, 董海峰, 温焕飞, 菅原康弘, 唐军, 马宗敏, 刘俊
cstr: 32037.14.aps.74.20241634

A method of modulating spin-polarized states with high spatiotemporal resolution in alkali-metal atomic vapor cell

MA Donghui, HE Xinxin, HUA Zeyu, LI Yanjun, DONG Haifeng, WEN Huanfei, YASUHIRO Sugawara, TANG Jun, MA Zongmin, LIU Jun
cstr: 32037.14.aps.74.20241634
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 原子自旋成像技术对气室内温度分布、旋光角检测以及镀膜抗弛豫特性测量至关重要, 其关键在于精确捕捉并解析原子自旋极化的复杂时空动态特性, 这些特性直接关系到磁强计带宽的扩展及磁梯度检测的灵敏度提升. 传统的气室内分割成像方法因静态特性限制, 无法实时捕捉原子自旋极化态的动态演变过程, 制约了量子测量仪器的性能提升. 针对这一挑战, 本研究提出了一种实时调控原子自旋极化态的碱金属原子气室动态自旋成像方法, 在空间分布上实时控制光束阵列中不同位置激光束的连续通断; 在时间序列上控制光束阵列中每束光的通断频率变化, 从而生成具有特定空间分布和频率特性的激光, 分别与气室内部不同位置的碱金属原子相互作用, 诱导原子自旋极化程度的变化. 通过对激光特性的精细调节, 当泵浦光的调制频率与原子在磁场中的拉莫尔频率相匹配时, 原子自旋极化达到最大值, 系统处于共振状态; 当调制频率与拉莫尔频率不匹配时, 原子自旋极化程度降低. 通过这种频率调制方法实现了对原子自旋极化状态地动态操控. 实验结果表明, 该方法达到95.9 μm的空间分辨率和355帧的时间分辨率, 显著优于传统静态自旋成像方法. 此方法增强了对原子自旋极化动态特性的认知, 能更精确地观测并分析磁场分布的动态特征, 从而为量子仪表性能的进一步优化提供坚实的实验依据与有力支持.
    With the state-of-the-art quantum measurement devices, such as atomic clocks, atomic gyroscopes, and atomic magnetometers, as their central components, the spatiotemporal evolution of atomic spin polarization in the atomic vapor cell has a major effect on both increasing the bandwidth of magnetometer and improving the accuracy of magnetic gradient measurements. However, the major factor impeding the further improvement of the performance of quantum measurement instrument is the inherent static nature of the traditional intra-vapor cell segmentation imaging technique, which makes it challenging to achieve the real-time capture of the dynamic evolution of atomic spin states. In this work, we suggest a dynamic spin imaging method for alkali metal atomic vapor cells with real-time modification of atomic spin polarization states in order to overcome this technological difficulty. In particular, to ensure that the laser can precisely act on the alkali metal atoms in various regions in the vapor cell, we employ a complex beam array management system to modify the on/off state of the laser beams at various positions in the spatial dimension in real time. In the meantime, we generate laser fields with particular spatial distribution and frequency characteristics by using frequency modulation techniques in the time series to accurately regulate the on-off frequency of each laser beam in the beam array. These laser beams cause dynamic changes in the atomic spin polarization state by interacting with alkali metal atoms at various points in the vapor cell. Through precise adjustment of the laser properties, we can see and study the dynamic evolution of the atomic spin-polarization state in real time. According to the experimental data, the technology outperforms the traditional static spin imaging techniques by achieving an excellent temporal resolution of 355 frames per second and a spatial resolution of 95.9 micrometers. The effective use of this method enables us to monitor and evaluate the dynamic aspects of magnetic field distribution with unprecedented precision, also greatly enhance our understanding of the dynamic characteristics of atomic spin polarization.
      通信作者: 马宗敏, mzmncit@163.com ; 刘俊, liuj@nuc.edu.cn
    • 基金项目: 国家重点研发计划(批准号: 2022YFC2204104)、国家自然科学基金国际合作与交流项目(批准号: 62220106012)、山西省杰出青年基金(批准号: 202103021221007)、山西量子传感与精密测量国际联合实验室(批准号: 202204041101015)和山西省基础研究发展计划(批准号: 202203021212502)资助的课题.
      Corresponding author: MA Zongmin, mzmncit@163.com ; LIU Jun, liuj@nuc.edu.cn
    • Funds: Project supported by the National Key Research and Development Program of China (Grant No. 2022YFC2204104), the International Cooperation and Exchange Project of National Natural Science Foundation of China (Grant No. 62220106012), the Shanxi Outstanding Youth Fund, China (Grant No. 202103021221007), the Shanxi International Joint Laboratory of Quantum Sensing and Precision Measurement, China (Grant No. 202204041101015), and the Fundamental Research Program of Shanxi Province, China (Grant No. 202203021212502).
    [1]

    Albert M, Cates G, Driehuys B, Happer W, Saam B, Springer Jr, Wishnia A 1994 Nature 370 199Google Scholar

    [2]

    Chupp T, Hoare R, Walsworth R, Wu B 1994 Phys. Rev. Lett. 72 2363Google Scholar

    [3]

    Navon G, Song Y Q, Room T, Appelt S, Taylor R, Pines A 1996 Scienc 271 1848Google Scholar

    [4]

    Ishikawa K, Anraku Y, Takahashi Y, Yabuzaki T 1999 J. Opt. Soc. Am. B 16 31Google Scholar

    [5]

    郝传鹏 2022博士学位论文(合肥: 中国科学技术大学)

    Hao C P 2022 Ph. D. Dissertation (Hefei: University of Science and Technology of China

    [6]

    Savukov I, Romalis M 2005 Phys. Rev. Lett. 94 123001Google Scholar

    [7]

    Xu S J, Yashchuk V, Donaldson M, Rochester S, Budker D, Pines A 2006 PNAS 103 12668Google Scholar

    [8]

    Savukov I, Karaulanov T 2014 J. Magn. Reson. 249 49Google Scholar

    [9]

    Young A, Appelt S, Baranga A, Erickson C, Happer W 1997 Appl. Phys. Lett. 70 3081Google Scholar

    [10]

    Skalla J, Wackerle G, Mehring M 1997 Opt. Commun. 143 209Google Scholar

    [11]

    Skalla J, Wackerle G, Mehring M, Pines A 1997 Phys. Lett. A 226 69Google Scholar

    [12]

    Baranga A, Appelt S, Erickson C, Young A, Happer W 1998 Phys. Rev. A 58 2282Google Scholar

    [13]

    Giel D, Hinz G, Nettels D, Weis A 2000 Opt. Express 6 251Google Scholar

    [14]

    Savukov I 2015 J. Magn. Reson. 256 9Google Scholar

    [15]

    Ito Y, Sato D, Kamada K, Kobayashi T 2014 IEEE Trans. Magn. 50 4006903Google Scholar

    [16]

    Nishi K, Ito Y, Kobayashi T 2018 Opt. Express 26 1988Google Scholar

    [17]

    Johnson C, Schwindt P 2010 IEEE International Frequency Control Symposium Newport Beach, CA, USA, June 4–6, 2010 p371

    [18]

    Johnson C, Schwindt P, Weisend M 2010 Appl. Phys. Lett. 97 243703Google Scholar

    [19]

    Kominis I, Kornack T, Allred J, Romalis M 2003 Nature 422 596Google Scholar

    [20]

    Gusarov A, Levron D, Paperno E, Shuker R, Baranga A 2009 IEEE Trans. Magn. 45 4478Google Scholar

    [21]

    Kim K, Begus S, Xia H, Lee S, Jazbinsek V, Trontelj Z, Romalis M 2014 NeuroImage 89 143Google Scholar

    [22]

    Xia H, Baranga A, Hoffman D, Romalis M 2006 Appl. Phys. Lett. 89 211104Google Scholar

    [23]

    Mamishin Y, Ito Y, Kobayashi T 2017 IEEE Trans. Magn. 53 4001606Google Scholar

    [24]

    Dolgovskiy V, Fescenko I, Sekiguchi N, Colombo S, Lebedev V, Zhang J, Weis A 2016 Appl. Phys. Lett. 109 023505Google Scholar

    [25]

    Weis A, Colombo S, Dolgovskiy V, Grujic Z, Lebedev V, Zhang J 2017 J. Phys.: Conf. Ser. 793 012032Google Scholar

    [26]

    Taue S, Toyota Y, Fujimori K, Fukano H 2017 22nd Microoptics Conference Tokyo, Japan, November 19–22, 2017 p212

    [27]

    Dong H F, Chen J L, Li J M, Liu C, Li A X, Zhao N, Guo F Z 2019 J. Appl. Phys. 125 243904Google Scholar

    [28]

    曹益平, 苏显渝, 向立群 2002 激光杂志 23 16Google Scholar

    Cao Y P, Su X Y, Xiang L Q 2002 Laser J 23 16Google Scholar

    [29]

    Ding Z C, Yuan J, Long X 2018 Sensors 18 1401Google Scholar

    [30]

    Wyllie R 2012 Ph. D. Dissertation (Madison: University of Wisconsin-Madison

    [31]

    Dong H F, Yin L X, Li A X, Zhao N, Chen J L, Sun M J 2019 J. Appl. Phys. 125 023908Google Scholar

    [32]

    Mitsunaga T, Nayar S 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Fort Collins, CO, USA, July 6–9, 1999 p374

  • 图 1  实验装置示意图

    Fig. 1.  Schematic diagram of the experimental setup.

    图 2  (a) DMD加载图片示意图; (b)气室内光强时空分布示意图(一列镜子); (c)气室内光强时空分布示意图(两列镜子), 其中d为空间周期, B为磁场强度, ${{2{\text{π}}}}/{{{\omega _1}}}$和${{2{\text{π}}}}/{{{\omega _2}}}$为时间周期, 本实验中B ≈ 1427 nT, ${{2{\text{π}}}}/{{{\omega _1}}} = 200\;{\text{μs}}$, ${{2{\text{π}}}}/{{{\omega _2}}} = 400\;{\text{μs}}$

    Fig. 2.  (a) Schematic of DMD loading images; (b) schematic of spatiotemporal distribution of light intensity inside the vapor cell (one column of mirrors); (c) schematic of spatial-temporal distribution of light intensity inside the vapor cell (two columns of mirrors), d represents spatial periodicity; B represents magnetic field intensity, ${{2{\text{π}}}}/{{{\omega _1}}}$, ${{2{\text{π}}}}/{{{\omega _2}}}$ represent time period, in this experiment B ≈ 1427 nT, ${{2{\text{π}}}}/{{{\omega _1}}} = 200\;{\text{μs}}$, ${{2{\text{π}}}}/{{{\omega _2}}} = 400\;{\text{μs}}$.

    图 3  碱金属原子的自旋进动示意图

    Fig. 3.  Schematic diagram illustrating the advance process of spin in alkali metal atoms.

    图 4  真实亮度的对数($\ln (Et)$)与灰度值百分比之间的函数关系

    Fig. 4.  Logarithm of true luminance ($\ln (Et)$) as a function of percent gray value.

    图 5  调制光场时需加载入DMD的图片 (a)字符大小对应于7列镜子宽度的二进制图片; (b)字符粗细增加, 字符大小对应于15列镜子宽度的二进制图片; (c)字符粗细再次增大, 字符大小对应于23列镜子宽度的二进制图片

    Fig. 5.  Pictures to be loaded into the DMD when modulating the light field: (a) The character size corresponds to a binary picture of 7 column mirror widths; (b) the character thickness increases, the character size corresponds to a binary picture of 15 column mirror widths; (c) the character thickness increases again, the character size corresponds to a binary picture of 23 column mirror widths.

    图 6  原子气室中自旋极化的二维成像 (a)未加磁场得到的背景图即激光光场直接成像; (b)加入磁场后的原子自旋极化图; (c)原子自旋极化图像减去激光光场成像的结果

    Fig. 6.  Two-dimensional imaging of spin polarization in an atomic vapor cell: (a) The background image obtained without applying a magnetic field, namely, the direct imaging of the laser light field; (b) the atomic spin polarization image after applying a magnetic field; (c) the result of subtracting the laser light field imaging from the atomic spin polarization image.

    图 7  极化原子动态成像图 (a)—(c)字符大小不断增大的原子自旋极化图, 图(a)中条纹的线宽对应7个柱状微镜, 宽度为95.9 μm

    Fig. 7.  Two-dimensional spin diagrams of atomic vapor cell: (a)–(c) Atomic spin polarization with increasing character sizes, the line width of the stripes in the panel (a) corresponds to 7 columnar micromirrors with a width of 95.9 μm.

    图 8  不同帧率下原子极化图 (a) 30 fps; (b) 150 fps; (c) 355 fps

    Fig. 8.  Atomic polarization plots at different frame rates: (a) 30 fps; (b) 150 fps; (c) 355 fps.

    图 9  (a) 相机帧率在30—385 fps时直线A上像素值极差变化; (b)帧率分别在345, 355, 365, 375, 385 fps时直线A上像素值变化曲线图

    Fig. 9.  (a) Variation of pixel value extremes on line A at camera frame rates from 30 fps to 385 fps; (b) graph of pixel value changes on line A at frame rates of 345, 355, 365, 375, and 385 fps respectively.

    图 10  气室内高质量原子动态自旋成像图, 蚂蚁内部黑色部分为原子低极化态区域, 外部为高极化态区域, 自旋成像图分别展示了在帧率为355 fps时, 不同时间下的蚂蚁运动轨迹

    Fig. 10.  Dynamic spin-imaging maps of atoms inside the vapor cell. The black part inside the ants is the region of low-polarized state of atoms, the outside is the region of high-polarized state, and the spin-imaging maps show the ants’ motion trajectories at different times at a frame rate of 355 fps, respectively.

    Baidu
  • [1]

    Albert M, Cates G, Driehuys B, Happer W, Saam B, Springer Jr, Wishnia A 1994 Nature 370 199Google Scholar

    [2]

    Chupp T, Hoare R, Walsworth R, Wu B 1994 Phys. Rev. Lett. 72 2363Google Scholar

    [3]

    Navon G, Song Y Q, Room T, Appelt S, Taylor R, Pines A 1996 Scienc 271 1848Google Scholar

    [4]

    Ishikawa K, Anraku Y, Takahashi Y, Yabuzaki T 1999 J. Opt. Soc. Am. B 16 31Google Scholar

    [5]

    郝传鹏 2022博士学位论文(合肥: 中国科学技术大学)

    Hao C P 2022 Ph. D. Dissertation (Hefei: University of Science and Technology of China

    [6]

    Savukov I, Romalis M 2005 Phys. Rev. Lett. 94 123001Google Scholar

    [7]

    Xu S J, Yashchuk V, Donaldson M, Rochester S, Budker D, Pines A 2006 PNAS 103 12668Google Scholar

    [8]

    Savukov I, Karaulanov T 2014 J. Magn. Reson. 249 49Google Scholar

    [9]

    Young A, Appelt S, Baranga A, Erickson C, Happer W 1997 Appl. Phys. Lett. 70 3081Google Scholar

    [10]

    Skalla J, Wackerle G, Mehring M 1997 Opt. Commun. 143 209Google Scholar

    [11]

    Skalla J, Wackerle G, Mehring M, Pines A 1997 Phys. Lett. A 226 69Google Scholar

    [12]

    Baranga A, Appelt S, Erickson C, Young A, Happer W 1998 Phys. Rev. A 58 2282Google Scholar

    [13]

    Giel D, Hinz G, Nettels D, Weis A 2000 Opt. Express 6 251Google Scholar

    [14]

    Savukov I 2015 J. Magn. Reson. 256 9Google Scholar

    [15]

    Ito Y, Sato D, Kamada K, Kobayashi T 2014 IEEE Trans. Magn. 50 4006903Google Scholar

    [16]

    Nishi K, Ito Y, Kobayashi T 2018 Opt. Express 26 1988Google Scholar

    [17]

    Johnson C, Schwindt P 2010 IEEE International Frequency Control Symposium Newport Beach, CA, USA, June 4–6, 2010 p371

    [18]

    Johnson C, Schwindt P, Weisend M 2010 Appl. Phys. Lett. 97 243703Google Scholar

    [19]

    Kominis I, Kornack T, Allred J, Romalis M 2003 Nature 422 596Google Scholar

    [20]

    Gusarov A, Levron D, Paperno E, Shuker R, Baranga A 2009 IEEE Trans. Magn. 45 4478Google Scholar

    [21]

    Kim K, Begus S, Xia H, Lee S, Jazbinsek V, Trontelj Z, Romalis M 2014 NeuroImage 89 143Google Scholar

    [22]

    Xia H, Baranga A, Hoffman D, Romalis M 2006 Appl. Phys. Lett. 89 211104Google Scholar

    [23]

    Mamishin Y, Ito Y, Kobayashi T 2017 IEEE Trans. Magn. 53 4001606Google Scholar

    [24]

    Dolgovskiy V, Fescenko I, Sekiguchi N, Colombo S, Lebedev V, Zhang J, Weis A 2016 Appl. Phys. Lett. 109 023505Google Scholar

    [25]

    Weis A, Colombo S, Dolgovskiy V, Grujic Z, Lebedev V, Zhang J 2017 J. Phys.: Conf. Ser. 793 012032Google Scholar

    [26]

    Taue S, Toyota Y, Fujimori K, Fukano H 2017 22nd Microoptics Conference Tokyo, Japan, November 19–22, 2017 p212

    [27]

    Dong H F, Chen J L, Li J M, Liu C, Li A X, Zhao N, Guo F Z 2019 J. Appl. Phys. 125 243904Google Scholar

    [28]

    曹益平, 苏显渝, 向立群 2002 激光杂志 23 16Google Scholar

    Cao Y P, Su X Y, Xiang L Q 2002 Laser J 23 16Google Scholar

    [29]

    Ding Z C, Yuan J, Long X 2018 Sensors 18 1401Google Scholar

    [30]

    Wyllie R 2012 Ph. D. Dissertation (Madison: University of Wisconsin-Madison

    [31]

    Dong H F, Yin L X, Li A X, Zhao N, Chen J L, Sun M J 2019 J. Appl. Phys. 125 023908Google Scholar

    [32]

    Mitsunaga T, Nayar S 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Fort Collins, CO, USA, July 6–9, 1999 p374

  • [1] 林沂, 吴逢川, 毛瑞棋, 姚佳伟, 刘燚, 安强, 付云起. 三端口光纤耦合原子气室探头的开发及其微波数字通信应用.  , 2022, 71(17): 170702. doi: 10.7498/aps.71.20220594
    [2] 王贺岩, 高怡帆, 廖家宝, 陈俊彩, 李怡莲, 吴怡, 徐国亮, 安义鹏. 二维NiBr2单层自旋电子输运以及光电性质.  , 2022, 71(9): 097502. doi: 10.7498/aps.71.20212384
    [3] 李春雷, 徐燕, 郑军, 王小明, 袁瑞旸, 郭永. 磁电势垒结构中光场辅助电子自旋输运特性.  , 2020, 69(10): 107201. doi: 10.7498/aps.69.20200237
    [4] 梁世恒, 陆沅, 韩秀峰. 自旋发光二极管研究进展.  , 2020, 69(20): 208501. doi: 10.7498/aps.69.20200866
    [5] 侯海燕, 姚慧, 李志坚, 聂一行. 磁性硅烯超晶格中电场调制的谷极化和自旋极化.  , 2018, 67(8): 086801. doi: 10.7498/aps.67.20180080
    [6] 姜恩海, 朱兴凤, 陈凌孚. Heusler合金Co2MnAl(100)表面电子结构、磁性和自旋极化的第一性原理研究.  , 2015, 64(14): 147301. doi: 10.7498/aps.64.147301
    [7] 伊丁, 武镇, 杨柳, 戴瑛, 解士杰. 有机分子在铁磁界面处的自旋极化研究.  , 2015, 64(18): 187305. doi: 10.7498/aps.64.187305
    [8] 郑圆圆, 任桂明, 陈锐, 王兴明, 谌晓洪, 王玲, 袁丽, 黄晓凤. 氢化铁的自旋极化效应及势能函数.  , 2014, 63(21): 213101. doi: 10.7498/aps.63.213101
    [9] 钱郁. 时空调制引起的漫游螺旋波与旅行螺旋波共存现象.  , 2013, 62(5): 058201. doi: 10.7498/aps.62.058201
    [10] 黎欢, 郭卫. 自旋极化对Kondo系统基态的影响.  , 2010, 59(10): 7320-7326. doi: 10.7498/aps.59.7320
    [11] 陈华, 杜磊, 庄奕琪, 牛文娟. Rashba自旋轨道耦合作用下电荷流散粒噪声与自旋极化的关系研究.  , 2009, 58(8): 5685-5692. doi: 10.7498/aps.58.5685
    [12] 陈小雪, 滕利华, 刘晓东, 黄绮雯, 文锦辉, 林位株, 赖天树. InGaN薄膜中电子自旋偏振弛豫的时间分辨吸收光谱研究.  , 2008, 57(6): 3853-3856. doi: 10.7498/aps.57.3853
    [13] 滕利华, 余华梁, 黄志凌, 文锦辉, 林位株, 赖天树. 本征GaAs中电子自旋极化对电子复合动力学的影响研究.  , 2008, 57(10): 6593-6597. doi: 10.7498/aps.57.6593
    [14] 唐振坤, 王玲玲, 唐黎明, 游开明, 邹炳锁. 磁台阶势垒结构中二维电子气的自旋极化输运.  , 2008, 57(9): 5899-5905. doi: 10.7498/aps.57.5899
    [15] 郭立俊, Jan-Peter Wüstenberg, Andreyev Oleksiy, Michael Bauer, Martin Aeschlimann. 利用飞秒双光子光电子发射研究GaAs(100)的自旋动力学过程.  , 2005, 54(7): 3200-3205. doi: 10.7498/aps.54.3200
    [16] 张昌文, 李 华, 董建敏, 王永娟, 潘凤春, 郭永权, 李 卫. 化合物SmCo5的电子结构、自旋和轨道磁矩及其交换作用分析.  , 2005, 54(4): 1814-1820. doi: 10.7498/aps.54.1814
    [17] 付吉永, 任俊峰, 刘德胜, 解士杰. 一维铁磁/有机共轭聚合物的自旋极化研究.  , 2004, 53(6): 1989-1993. doi: 10.7498/aps.53.1989
    [18] 陈丽, 李华, 董建敏, 潘凤春, 梅良模. 原子簇La8-xBaxCuO6的原子磁矩和自旋极化的电子结构研究.  , 2004, 53(1): 254-259. doi: 10.7498/aps.53.254
    [19] 秦建华, 郭 永, 陈信义, 顾秉林. 磁电垒结构中自旋极化输运性质的研究.  , 2003, 52(10): 2569-2575. doi: 10.7498/aps.52.2569
    [20] 郭 永, 顾秉林, 川添良幸. 磁量子结构中二维自旋电子的隧穿输运.  , 2000, 49(9): 1814-1820. doi: 10.7498/aps.49.1814
计量
  • 文章访问数:  421
  • PDF下载量:  15
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-11-25
  • 修回日期:  2025-03-03
  • 上网日期:  2025-03-05

/

返回文章
返回
Baidu
map