搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

计及陷阱演变的高介电芳香族聚脲老化特性及机理

冯阳 张硕 周彬 刘培焱 杨心如 李盛涛

引用本文:
Citation:

计及陷阱演变的高介电芳香族聚脲老化特性及机理

冯阳, 张硕, 周彬, 刘培焱, 杨心如, 李盛涛
cstr: 32037.14.aps.74.20241579

Aging characteristics and mechanism of high-dielectric aromatic polyureas considering trap evolutions

FENG Yang, ZHANG Shuo, ZHOU Bin, LIU Peiyan, YANG Xinru, LI Shengtao
cstr: 32037.14.aps.74.20241579
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 采用热氧老化方式模拟聚脲(polyurea, PU)薄膜在高温工况下的老化行为, 根据PU薄膜介电储能特性的变化规律将其老化过程划分为3个阶段. 结果表明: 老化初期, 氧气的桥接作用促使分子链规整排列, 相邻脲基团之间的氢键作用稍有增强, 分子链间距减小, 介电常数减小, 而击穿场强变化较小; 老化中期, 醚键断裂并诱导形成联苯结构, 体系无定形程度加剧, 介电常数增大, 但联苯结构加深了陷阱深度, 导致载流子迁移率降低, 这提高了薄膜的击穿场强; 老化后期, 氧气促使脲基分解, 造成贡献深陷阱能级的基团数量减少, 同时主链发生裂解, 并释放CO2与H2O等小分子物质, 这些因素共同导致了PU的击穿场强显著降低. 热氧老化过程中PU的储能密度表现出与击穿场强相同的时间依赖性, 证明了计及陷阱演变的PU储能性能退化机理: 氧气对醚键和脲基的分解作用分别诱发了联苯结构的形成和主链的裂解, 这改变了陷阱深度, 其中陷阱深度越浅, PU性能退化越显著.
    Dielectric capacitors are essential energy storage devices with high power density. The dielectric films of capacitors will age at working temperatures, a leading their performance to degrade. Polyurea (PU) is a potential working dielectric for capacitors with high energy density and low dielectric loss. However, the aging characteristics and underlying mechanism of PU have not been discussed. Considering the operating temperature of commercial dielectric capacitors, the aging characteristics of PU are investigate by being exposed to 80 °C for different durations. Compared with dielectric constant, breakdown strength changes significantly with aging time which can be used as a characteristic parameter to evaluate the aging degree of PU. Combining experimental method and simulation method, the correlation between molecular structure, trap properties and breakdown strength during thermo-oxidative aging is studied and established. The results show that the thermal-oxidative aging of PU can be divided into three stages. In the early stage of aging, the bridging effect of oxygen promotes the order arrangement of molecular chains. In this stage, the molecular chain spacing decreases, but the H-bonding interaction between adjacent urea groups is enhanced slightly as shown in Fig. (a). As a result, the dielectric constant decreases, while the breakdown strength is almost unchanged. In the middle stage of aging, ether bonds break and inducing the formation of biphenyl structures and resulting in a disordered structure as illustrated in Fig. (b). The enhanced mobility effect increases the dielectric constant. Meanwhile, the biphenyl structures deepen the trap depth, resulting in the decrease of carrier mobility and the increase of the breakdown strength. In the late stage of aging, oxygen promotes the decomposition of urea groups, thereby reducing the number of urea groups that form deep traps. At the same time, the main chain undergoes breakage, releasing small molecules such as CO2 and H2O, which is shown in Fig. (c). These factors collectively lead to a significant reduction in the breakdown strength of PU. In addition, the variations of dielectric constant, breakdown strength and energy density in the three stages are summarized in Fig. (d).
      通信作者: 李盛涛, sli@mail.xjtu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 52207030)和电工材料电气绝缘全国重点实验室(批准号: EIPE22311)资助的课题.
      Corresponding author: LI Shengtao, sli@mail.xjtu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 52207030) and the State Key Laboratory of Electrical Insulation and Power Equipment, China (Grant No. EIPE22311).
    [1]

    Zhang H, Wei T, Zhang Q, Ma W, Fan P, Salamon D, Zhang S T, Nan B, Tan H, Ye Z G 2020 J. Mater. Chem. C 8 16648Google Scholar

    [2]

    Palneedi H, Peddigari M, Hwang G T, Jeong D Y, Ryu J 2018 Adv. Funct. Mater. 28 1803665Google Scholar

    [3]

    Ren W B, Pan J Y, Dan Z K, Zhang T, Jiang J Y, Fan M Z, Hu P H, Li M, Lin Y H, Nan C W, Shen Y 2021 Chem. Eng. J. 420 127614Google Scholar

    [4]

    李吉超, 王春雷, 钟维烈, 薛旭艳, 王渊旭 2002 51 776Google Scholar

    Li J C, Wang C L, Zhong W L, Xue X Y, Wang Y X 2002 Acta Phys. Sin. 51 776Google Scholar

    [5]

    董久锋, 邓星磊, 牛玉娟, 潘子钊, 汪宏 2020 69 217701Google Scholar

    Dong J F, Deng X L, Niu Y J, Pan Z Z, Wang H 2020 Acta Phys. Sin. 69 217701Google Scholar

    [6]

    Wang Q, Wu C, Gao Y F, Liu S M, Liu S Q, Zuo Z, Liang X D 2022 High Voltage 7 1123Google Scholar

    [7]

    叶润峰, 裴家耀, 郑明胜, 党智敏 2020 电工技术学报 35 3529Google Scholar

    Ye R F, Pei J Y, Zheng M S, Dang Z M 2020 Trans. Chin. Electrotech. Soc. 35 3529Google Scholar

    [8]

    Jiang X W, Wang S H, Wang W H, Han R 2021 J. Electron. Mater. 50 2400Google Scholar

    [9]

    李奕萱 2021 硕士学位论文 (成都: 西南交通大学)

    Li Y X 2021 M. S. Thesis (Chengdu: Southwest Jiaotong University

    [10]

    Wang Y, Zhou X, Lin M R, Lu S G, Lin J H, Furman E, Zhang Q M 2010 IEEE Trans. Dielectr. Electr. Insul. 17 28Google Scholar

    [11]

    Wang Y, Zhou X, Lin M R, Zhang Q M 2009 Appl. Phys. Lett. 94 202905Google Scholar

    [12]

    Feng Y, Jiang L H, Yang A Q, Liu X, Yang L Q, Lu G H, Li S T 2022 Macromol. Rapid Commun. 43 2100700Google Scholar

    [13]

    Wu S, Lin MR, Burlingame Q, Zhang Q M 2014 Appl. Phys. Lett. 104 072903Google Scholar

    [14]

    Zhao Z H, Zhang S, Li M R, Feng Y, Yang L Q, Li S T 2024 J. Appl. Phys. 135 194103Google Scholar

    [15]

    Hattori T, Takahashi Y, Iijima M, Fukada E 1996 9th International Symposium on Electrets (ISE 9) Shanghai, China, September 25–30, 1996 p819

    [16]

    Zhao Z H, Feng Y, Yang L Q, Zhang S, Liu X, Zhang Y, Li M R, Li S T 2023 Appl. Phys. Lett. 123 232901Google Scholar

    [17]

    Wu Y J, Zhao H, Zhang N, Wang H Q, Zhang C Y, Yin L, Bai J B 2024 J. Mater. Chem. C 12 2993Google Scholar

    [18]

    Zhu X D, Chen W X, Pan M, Zhou X, Zhang Y, Dong L J 2024 ACS Appl. Polym. Mater. 6 4808Google Scholar

    [19]

    Feng Y, Yang L Q, Qu G H, Suga T, Nishide H, Chen G G, Li S T 2020 Macromol. Rapid Commun. 41 2000167Google Scholar

    [20]

    Zhou Y, Yuan C, Wang S J, Zhu Y J, Cheng S, Yang X, Yang Y, Hu J, He J L, Li Q 2020 Energy Storage Mater. 28 255Google Scholar

    [21]

    Hu J, Zhao X C, Xie J H, Liu Y, Sun S L 2022 J. Polym. Res. 29 182Google Scholar

    [22]

    张家阳,苏安双,徐丽丽,吴志琴,李兆宇,郑健 2021 水利科学与寒区工程 4 1

    Zhang J Y, Su A S, Xu L L, Wu Z Q, Li Z Y, Zheng J 2021 Hydro Science and Cold Zone Engineering 4 1

    [23]

    沙光荣, 来冰冰, 赵启龙, 孙一平, 王晓波, 娄文静, 刘晓玲 2024 摩擦学学报 44 1074Google Scholar

    Sha G R, Lai B B, Zhao Q L, Sun Y P, Wang X B, Lou W J, Liu X L 2024 Tribology 44 1074Google Scholar

    [24]

    鲁旭, 韩帅, 李庆民, 黄旭炜, 王学磊, 王高勇 2016 电工技术学报 31 14Google Scholar

    Lu X, Han S, Li Q M, Huang X W, Wang X L, Wang G Y 2016 Trans. Chin. Electrotech Soc. 31 14Google Scholar

    [25]

    Xiong J, Fan X, Long D J, Zhu B F, Zhang X, Lu J Y, Xie Y C, Zhang Z C 2022 J. Mater. Chem. A 10 24611Google Scholar

    [26]

    张传升, 章程, 任成燕, 黄邦斗, 邢照亮, 邵涛 2024 电工技术学报 39 2193Google Scholar

    Zhang C S, Zhang C, Ren C Y, Huang B D, Xing Z L, Shao T 2024 Trans. Chin. Electrotech. Soc. 39 2193Google Scholar

    [27]

    Li J L, Wang S J, Zhu Y J, Luo Z, Zhang Y R, Shao Q, Quan H, Wang M T, Hu S X, Yang M C, Fu J, Wang R Hu J, Yuan H, He J L, Li Q 2023 J. Mater. Chem. A 11 10659Google Scholar

    [28]

    Yanagisawa Y, Nan Y, Okuro K, Aida T 2018 Science 359 72Google Scholar

    [29]

    Sebastian N, Contal C, Sanchez-Ferrer A Pieruccini M 2018 Soft. Matter. 14 7839Google Scholar

    [30]

    Dong R, Ranjan V, Nardelli M B Bernholc J 2015 Phys. Rev. B 92 024203Google Scholar

    [31]

    冯阳, 渠广昊, 李盛涛 2024 高电压技术 50 2363Google Scholar

    Feng Y, Qu G H, Li S T 2024 High Voltage Eng. 50 2363Google Scholar

    [32]

    Jiang L H, Liu X, Hu S C, Li M R, Yang L Q, Feng Y, Li S T 2024 Macromol. Rapid. Commun. 45 2300501Google Scholar

    [33]

    冯阳, 渠广昊, 李盛涛 2024 中国电机工程学报 44 3360Google Scholar

    Feng Y, Qu G H, Li S T 2024 Proc. CSEE 44 3360Google Scholar

  • 图 1  PU合成过程

    Fig. 1.  PU synthesis process.

    图 2  介电测量系统

    Fig. 2.  Dielectric measurement systems.

    图 3  红外光谱图

    Fig. 3.  FTIR spectra.

    图 4  (a) XRD图谱; (b) 分子链间距

    Fig. 4.  (a) XRD pattern; (b) molecular chain spacing.

    图 5  脲基中C—N键 (a)断裂前; (b)断裂时; (c)断裂后重新连接; (d)动态变化示意图; (e)氧气桥接作用; (f)示意图(OVITO可视化图像中的原子: 氢原子、氧原子、碳原子和氮原子分别用白色、绿色、金色和蓝色球体表示)

    Fig. 5.  C—N bonds in the urea group: (a) Before breakage; (b) during breakage; (c) reconnection after breakage; (d) schematic representation of the dynamics; (e) oxygen bridging; (f) schematic diagrams (atoms in the OVITO visualization image: hydrogen, oxygen, carbon and nitrogen atoms are represented by white, green, gold and blue spheres, respectively).

    图 6  (a) 联苯结构; (b) 老化中期分子结构变化示意图

    Fig. 6.  (a) Biphenyl structure; (b) schematic representation of molecular structure changes in the mid-aging period.

    图 7  部分脲基分解成小分子

    Fig. 7.  Partial decomposition of the urea group into small molecules.

    图 8  (a)介电常数; (b)介电损耗; (c)电导率; (d)介电常数和链间距的关联

    Fig. 8.  (a) Dielectric constant; (b) dielectric loss; (c) electrical conductivity; (d) correlation between dielectric constant and chain spacing.

    图 9  (a)直流击穿场强; (b)介电储能特性

    Fig. 9.  (a) Direct current breakdown strength; (b) dielectric energy storage characteristics.

    图 10  (a)高场电导; (b)载流子迁移率、击穿强度和深陷阱能级的关系图; TSDC曲线(其中图(c), (d), (e), (f), (g), (h)分别对应0, 2, 4, 8, 16, 32 d)

    Fig. 10.  (a) High-field conductance; (b) plot of carrier mobility, breakdown strength and deep trap energy levels; TSDC curves (where (c), (d), (e), (f), (g), and (h) correspond to 0, 2, 4, 8, 16, and 32 days, respectively).

    图 11  PU能带结构与LUMO轨道能级分布 (a)未老化; (b)老化初期; (c)老化中期. DOS (d)未老化; (e)老化初期; (f)老化中期

    Fig. 11.  Energy band structure and LUMO orbital energy level distribution: (a) Unaged, (b) early aged, (c) mid aged of PU. DOS: (d) Unaged; (e) early aged; (f) mid aged of PU.

    Baidu
  • [1]

    Zhang H, Wei T, Zhang Q, Ma W, Fan P, Salamon D, Zhang S T, Nan B, Tan H, Ye Z G 2020 J. Mater. Chem. C 8 16648Google Scholar

    [2]

    Palneedi H, Peddigari M, Hwang G T, Jeong D Y, Ryu J 2018 Adv. Funct. Mater. 28 1803665Google Scholar

    [3]

    Ren W B, Pan J Y, Dan Z K, Zhang T, Jiang J Y, Fan M Z, Hu P H, Li M, Lin Y H, Nan C W, Shen Y 2021 Chem. Eng. J. 420 127614Google Scholar

    [4]

    李吉超, 王春雷, 钟维烈, 薛旭艳, 王渊旭 2002 51 776Google Scholar

    Li J C, Wang C L, Zhong W L, Xue X Y, Wang Y X 2002 Acta Phys. Sin. 51 776Google Scholar

    [5]

    董久锋, 邓星磊, 牛玉娟, 潘子钊, 汪宏 2020 69 217701Google Scholar

    Dong J F, Deng X L, Niu Y J, Pan Z Z, Wang H 2020 Acta Phys. Sin. 69 217701Google Scholar

    [6]

    Wang Q, Wu C, Gao Y F, Liu S M, Liu S Q, Zuo Z, Liang X D 2022 High Voltage 7 1123Google Scholar

    [7]

    叶润峰, 裴家耀, 郑明胜, 党智敏 2020 电工技术学报 35 3529Google Scholar

    Ye R F, Pei J Y, Zheng M S, Dang Z M 2020 Trans. Chin. Electrotech. Soc. 35 3529Google Scholar

    [8]

    Jiang X W, Wang S H, Wang W H, Han R 2021 J. Electron. Mater. 50 2400Google Scholar

    [9]

    李奕萱 2021 硕士学位论文 (成都: 西南交通大学)

    Li Y X 2021 M. S. Thesis (Chengdu: Southwest Jiaotong University

    [10]

    Wang Y, Zhou X, Lin M R, Lu S G, Lin J H, Furman E, Zhang Q M 2010 IEEE Trans. Dielectr. Electr. Insul. 17 28Google Scholar

    [11]

    Wang Y, Zhou X, Lin M R, Zhang Q M 2009 Appl. Phys. Lett. 94 202905Google Scholar

    [12]

    Feng Y, Jiang L H, Yang A Q, Liu X, Yang L Q, Lu G H, Li S T 2022 Macromol. Rapid Commun. 43 2100700Google Scholar

    [13]

    Wu S, Lin MR, Burlingame Q, Zhang Q M 2014 Appl. Phys. Lett. 104 072903Google Scholar

    [14]

    Zhao Z H, Zhang S, Li M R, Feng Y, Yang L Q, Li S T 2024 J. Appl. Phys. 135 194103Google Scholar

    [15]

    Hattori T, Takahashi Y, Iijima M, Fukada E 1996 9th International Symposium on Electrets (ISE 9) Shanghai, China, September 25–30, 1996 p819

    [16]

    Zhao Z H, Feng Y, Yang L Q, Zhang S, Liu X, Zhang Y, Li M R, Li S T 2023 Appl. Phys. Lett. 123 232901Google Scholar

    [17]

    Wu Y J, Zhao H, Zhang N, Wang H Q, Zhang C Y, Yin L, Bai J B 2024 J. Mater. Chem. C 12 2993Google Scholar

    [18]

    Zhu X D, Chen W X, Pan M, Zhou X, Zhang Y, Dong L J 2024 ACS Appl. Polym. Mater. 6 4808Google Scholar

    [19]

    Feng Y, Yang L Q, Qu G H, Suga T, Nishide H, Chen G G, Li S T 2020 Macromol. Rapid Commun. 41 2000167Google Scholar

    [20]

    Zhou Y, Yuan C, Wang S J, Zhu Y J, Cheng S, Yang X, Yang Y, Hu J, He J L, Li Q 2020 Energy Storage Mater. 28 255Google Scholar

    [21]

    Hu J, Zhao X C, Xie J H, Liu Y, Sun S L 2022 J. Polym. Res. 29 182Google Scholar

    [22]

    张家阳,苏安双,徐丽丽,吴志琴,李兆宇,郑健 2021 水利科学与寒区工程 4 1

    Zhang J Y, Su A S, Xu L L, Wu Z Q, Li Z Y, Zheng J 2021 Hydro Science and Cold Zone Engineering 4 1

    [23]

    沙光荣, 来冰冰, 赵启龙, 孙一平, 王晓波, 娄文静, 刘晓玲 2024 摩擦学学报 44 1074Google Scholar

    Sha G R, Lai B B, Zhao Q L, Sun Y P, Wang X B, Lou W J, Liu X L 2024 Tribology 44 1074Google Scholar

    [24]

    鲁旭, 韩帅, 李庆民, 黄旭炜, 王学磊, 王高勇 2016 电工技术学报 31 14Google Scholar

    Lu X, Han S, Li Q M, Huang X W, Wang X L, Wang G Y 2016 Trans. Chin. Electrotech Soc. 31 14Google Scholar

    [25]

    Xiong J, Fan X, Long D J, Zhu B F, Zhang X, Lu J Y, Xie Y C, Zhang Z C 2022 J. Mater. Chem. A 10 24611Google Scholar

    [26]

    张传升, 章程, 任成燕, 黄邦斗, 邢照亮, 邵涛 2024 电工技术学报 39 2193Google Scholar

    Zhang C S, Zhang C, Ren C Y, Huang B D, Xing Z L, Shao T 2024 Trans. Chin. Electrotech. Soc. 39 2193Google Scholar

    [27]

    Li J L, Wang S J, Zhu Y J, Luo Z, Zhang Y R, Shao Q, Quan H, Wang M T, Hu S X, Yang M C, Fu J, Wang R Hu J, Yuan H, He J L, Li Q 2023 J. Mater. Chem. A 11 10659Google Scholar

    [28]

    Yanagisawa Y, Nan Y, Okuro K, Aida T 2018 Science 359 72Google Scholar

    [29]

    Sebastian N, Contal C, Sanchez-Ferrer A Pieruccini M 2018 Soft. Matter. 14 7839Google Scholar

    [30]

    Dong R, Ranjan V, Nardelli M B Bernholc J 2015 Phys. Rev. B 92 024203Google Scholar

    [31]

    冯阳, 渠广昊, 李盛涛 2024 高电压技术 50 2363Google Scholar

    Feng Y, Qu G H, Li S T 2024 High Voltage Eng. 50 2363Google Scholar

    [32]

    Jiang L H, Liu X, Hu S C, Li M R, Yang L Q, Feng Y, Li S T 2024 Macromol. Rapid. Commun. 45 2300501Google Scholar

    [33]

    冯阳, 渠广昊, 李盛涛 2024 中国电机工程学报 44 3360Google Scholar

    Feng Y, Qu G H, Li S T 2024 Proc. CSEE 44 3360Google Scholar

  • [1] 高建, 王磊, 周恩泽, 唐艳霞, 隋浩然, 武康宁, 李建英. 限域结构热致变色相变环氧复合绝缘陷阱特性的机理.  , 2025, 74(1): 017701. doi: 10.7498/aps.74.20241447
    [2] 李国倡, 郭孔英, 张家豪, 孙维鑫, 朱远惟, 李盛涛, 魏艳慧. 电缆附件用硅橡胶力-热老化特性及电-热-力多物理场耦合仿真研究.  , 2024, 73(7): 070701. doi: 10.7498/aps.73.20231869
    [3] 查俊伟, 查磊军, 郑明胜. 聚偏氟乙烯基复合材料储能特性优化策略.  , 2023, 72(1): 018401. doi: 10.7498/aps.72.20222012
    [4] 王娇, 刘少辉, 周梦, 郝好山, 翟继卫. 钛酸锶纳米纤维表面羟基化处理对聚偏氟乙烯复合材料介电性能和储能性能的影响.  , 2020, 69(21): 218101. doi: 10.7498/aps.69.20200592
    [5] 王娇, 刘少辉, 陈长青, 郝好山, 翟继卫. 钛酸钡基/聚偏氟乙烯复合介质材料的界面改性与储能性能.  , 2020, 69(21): 217702. doi: 10.7498/aps.69.20201031
    [6] 蔡家欢, 李平, 文玉梅, 鲍宜壮, 刘双建. 石英晶振的储能特性.  , 2016, 65(10): 104205. doi: 10.7498/aps.65.104205
    [7] 余洋, 米增强. 机械弹性储能机组储能过程非线性动力学模型与混沌特性.  , 2013, 62(3): 038403. doi: 10.7498/aps.62.038403
    [8] 任舰, 闫大为, 顾晓峰. AlGaN/GaN 高电子迁移率晶体管漏电流退化机理研究.  , 2013, 62(15): 157202. doi: 10.7498/aps.62.157202
    [9] 商怀超, 刘红侠, 卓青青. 低剂量率60Co γ 射线辐照下SOI MOS器件的退化机理.  , 2012, 61(24): 246101. doi: 10.7498/aps.61.246101
    [10] 游海龙, 蓝建春, 范菊平, 贾新章, 查薇. 高功率微波作用下热载流子引起n型金属-氧化物-半导体场效应晶体管特性退化研究.  , 2012, 61(10): 108501. doi: 10.7498/aps.61.108501
    [11] 罗振飞, 吴志明, 许向东, 王涛, 蒋亚东. 纳米VOx薄膜在空气中的电学特性退化研究.  , 2011, 60(6): 067302. doi: 10.7498/aps.60.067302
    [12] 李蕾蕾, 于宗光, 肖志强, 周昕杰. SOI SONOS EEPROM 总剂量辐照阈值退化机理研究.  , 2011, 60(9): 098502. doi: 10.7498/aps.60.098502
    [13] 沈自才, 孔伟金, 冯伟泉, 丁义刚, 刘宇明, 郑慧奇, 赵雪, 赵春晴. 热控涂层光学性能退化模型研究.  , 2009, 58(2): 860-864. doi: 10.7498/aps.58.860
    [14] 陈焕庭, 吕毅军, 陈忠, 张海兵, 高玉琳, 陈国龙. 基于电容和电导特性分析GaN蓝光发光二极管老化机理.  , 2009, 58(8): 5700-5704. doi: 10.7498/aps.58.5700
    [15] 朱 利, 杨文革, 徐玲玲, 陈定安, 王 文, 崔一平. 新型有机非线性光学材料L-苹果酸脲薄膜形成机理及性质研究.  , 2007, 56(1): 569-573. doi: 10.7498/aps.56.569
    [16] 於海武, 徐美健, 段文涛, 隋 展. Yb离子抽运动力学及脉冲储能特性研究.  , 2007, 56(7): 4158-4168. doi: 10.7498/aps.56.4158
    [17] 李忠贺, 刘红侠, 郝 跃. 超深亚微米PMOS器件的NBTI退化机理.  , 2006, 55(2): 820-824. doi: 10.7498/aps.55.820
    [18] 刘红侠, 郑雪峰, 郝 跃. NBT导致的深亚微米PMOS器件退化与物理机理.  , 2005, 54(3): 1373-1377. doi: 10.7498/aps.54.1373
    [19] 任红霞, 郝 跃. 新型槽栅PMOSFET热载流子退化机理与抗热载流子效应研究.  , 2000, 49(9): 1683-1688. doi: 10.7498/aps.49.1683
    [20] 沈月林, 龚云贵. 非退化的Ashtekar理论中的正能证明.  , 1995, 44(10): 1534-1540. doi: 10.7498/aps.44.1534
计量
  • 文章访问数:  347
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-11-11
  • 修回日期:  2025-01-24
  • 上网日期:  2025-02-21

/

返回文章
返回
Baidu
map