搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

DyFeO3中高于Morin温度的新型磁相变

苏浩斌 郑世芸 王宁 朱国锋 居学尉 黄峰 曹义明 王向峰

引用本文:
Citation:

DyFeO3中高于Morin温度的新型磁相变

苏浩斌, 郑世芸, 王宁, 朱国锋, 居学尉, 黄峰, 曹义明, 王向峰

A new magnetic phase transition above Morin temperature in DyFeO3

SU Haobin, ZHENG Shiyun, WANG Ning, ZHU Guofeng, JU Xuewei, HUANG Feng, CAO Yiming, WANG Xiangfeng
科大讯飞全文翻译 (iFLYTEK Translation)
PDF
导出引用
  • 稀土正铁氧体(RFeO3,R为稀土原子)包含Fe3+R3+两套磁性离子亚晶格,存在Fe3+-Fe3+、Fe3+-R3+R3+-R3+三种相互作用,它们是稀土正铁氧体丰富磁性的来源。本文利用时域太赫兹磁光谱,在1.6至300 K的温度范围内,在不同磁场下,测量a-cut DyFeO3单晶样品的吸收光谱,并分析光谱中铁磁(FM)和反铁磁共振(AFMR)吸收峰的温度和磁场依赖特性。在零磁场变温实验中,我们发现随温度降低在Morin温度(~50 K)出现的温度诱导的自旋重取向(Γ4®Γ1),以及在4 K温度以下存在一个由于电磁振子导致的宽带吸收。在Morin温度以上,我们在恒定温度(70 K、77 K、90 K和100 K)下测量了样品在0至7 T磁场范围的吸收光谱。实验结果表明,随着磁场的增加,存在一个新的磁相变过程(Γ4Γ24Γ2Γ24Γ2),相变的临界磁场随温度而变化。这一相变过程是由于外磁场和Fe3+-Dy3+的各向异性交换相互作用导致的内部有效场的相互竞争和对磁矩的协同作用。本项研究为深入理解稀土铁氧化物的丰富相变和磁电耦合特性,以及开发相关的自旋电子学器件提供参考。
    Rare-earth orthoferrites (RFeO3​) have garnered significant attention due to their intricate magnetic interactions and potential applications in ultrafast spintronic devices. Among them, DyFeO3 exhibits rich magnetic phase transitions driven by the interplay of Fe³⁺ and Dy³⁺ sublattices. While previous studies focused on temperature-induced spin reorientation near the Morin temperature (TM∼50 K), the magnetic phase behavior under external fields above TM remains less explored. This work aims to systematically investigate the temperature- and magnetic-field-dependent magneto-dynamic properties of a-cut DyFeO3 single crystals, with an emphasis on identifying novel phase transitions and elucidating the underlying mechanisms involving Fe³⁺-Dy³⁺ anisotropic exchange interactions. High-quality a-cut DyFeO3 single crystals were grown using the optical floating zone method and characterized via XRD and Laue diffraction. Time-domain terahertz spectroscopy (THz-TDS) coupled with a superconducting magnet (0-7 T, 1.6-300 K) was employed to probe the ferromagnetic resonance (FM)and antiferromagnetic resonance (AFMR) modes. By analyzing the frequency trends in the spectra, we infer the response of internal magnetic moments to external stimuli. In the zero magnetic field experiment, we find that the temperature induced spin reorientation ( Γ 4Γ 1) occurs at Morin temperature(~50 K) with decreasing temperature. A broadband electromagnetic absorption (0.45-0.9 THz) emerged below 4 K, attributed to electromagnons activated by broken inversion symmetry in the Dy³⁺ antiferromagnetic state. Above the Morin temperature, we measured the absorption spectra of the sample at constant temperatures (70 K, 77 K, 90 K, and 100 K) in the 0 to 7 T magnetic field range. The experimental results show that with the increase of magnetic field, there exists a new magnetic phase transition ( Γ4Γ24Γ2Γ24Γ2 ), and the critical magnetic field of the phase transition changes with temperature. The phase transitions arise from the competition between external magnetic fields and internal effective fields generated by anisotropic Fe³⁺-Dy³⁺ exchange. These findings advance the understanding of magnetoelectric effects in RFeO3​ systems and provide a roadmap for designing spin-based devices leveraging field-tunable phase transitions.
  • [1]

    Johnson C E, Prelorendjo L A, Thomas M F 1980 J. Magn. Magn. Mater. 15 557

    [2]

    Kimel A V, Ivanov B A, Pisarev R V, Usachev P A, Kirilyuk A, Rasing T 2009  Nat. Phys. 5 727

    [3]

    Yuan S J, Ren W, Hong F, Wang Y B, Zhang J C, Bellaiche L, Cao S X, Cao G   2013 Phys. Rev. B 87184405

    [4]

    Kimel A V, Kirilyuk A, Usachev P A, Pisarev R V, Balbashov A M, Rasing T   2005 Nature 435 655

    [5]

    Bamba M, Li X W, Peraca N M, Kono J 2022 Commun. Phys. 5 3

    [6]

    White R L 1969 J. Appl. Phys. 40 1061

    [7]

    Yamaguchi T 1974 J. Phys. Chem. Solids 35 479

    [8]

    Moriya T 1960 Phys. Rev. 120 91

    [9]

    Dzyaloshinsky I 1958 J. Phys. Chem. Solids 4 241

    [10]

    Balbashov A M, Volkov A A, Lebedev S P, Mukhin A A, Prokhorov A S 1985 Sov. Phys. JETP 61 573

    [11]

    Stanislavchuk T N, Wang Y Z, Janssen Y, Carr G L, Cheong S W, Sirenko A A2016 Phys. Rev. B 93 094403

    [12]

    Prelorendjo L A, Johnson C E, Thomas M F, Wanklyn B M 1980 J. Phys. C: Solid State Phys. 13 2567

    [13]

    Koshizuka N, Hayashi K 1988 J. Phys. Soc. Jpn. 57 4418

    [14]

    Eremenko V V, Gnatchenko S L, Kharchenko N F, Lebedev P P, Piotrowski K, Szymczak H, Szymczak R 1987 Europhys. Lett. 4 1327

    [15]

    Gnatchenko S L, Kharchenko N F, Lebedev P P, Piotrowski K, Szymczak H, Szymczak R 1989 J. Magn. Magn. Mater. 81 125

    [16]

    Balbashov A M, Marchukov P Y, Nikolaev I V,Rudashevskiĭ E G 1988Sov.Phys. JETP 67 1910

    [17]

    Peraca N M, Li X W, Moya J M, Hayashida K, Kim D, Ma X X, Neubauer K J,Padilla D F, Huang C L, Dai P C, Nevidomskyy A H, Pu H, Morosan E, Cao S X, Bamba M, Kono J 2024 Commun Mater 5 42

    [18]

    Lin X, Jiang J J, Jin Z M, Wang D, Tian Z, Han J G, Cheng Z X, Ma G H 2015Appl. Phys. Lett. 106092403

    [19]

    Makihara T, Hayashida K, Noe II G T, Li X W, Peraca N M, Ma X X, Jin Z M, Ren W, Ma G H, Katayama I, Takeda J, Nojiri H, Turchinovich D, Cao S X, Bamba M, Kono J 2021 Nat. Commun. 12 3115

    [20]

    Cao Y M, Xiang M L, Zhao W Y, Wang G H, Feng Z J, Kang B J, Stroppa A, Zhang J C, Ren W, Cao S X 2016 J. Appl. Phys. 119 063904

    [21]

    Ju X W, Zhu G F, Huang F, Dai Z R, Chen Y Q, Guo C X, Deng L, Wang X F 2022 Opt. Express 30 957

    [22]

    Ju X W, Hu Z Q, Huang F, Wu H B, Belyanin A, Kono J, Wang X F 2021Opt. Express 29 9261

    [23]

    Fu Z C, Chen J Y, Shang J M, Lin X, Suo P, Sun K W, Wang C, Li Q X, Luo J L, Wang X B, Wu A H, Ma G H 2024Appl. Phys. Lett. 125 241102

    [24]

    Cao S X, Chen L, Zhao W Y, Xu K, Wang G H, Yang Y L, Kang B J, Zhao H J, Chen P, Stroppa A, Zheng R K, Zhang J C, Ren W, Íñiguez J, Bellaiche L 2016 Sci. Rep. 6 37529

    [25]

    Herrmann G F 1963 J. Phys. Chem. Solids 24 597

  • [1] 弭孟娟, 于立轩, 肖寒, 吕兵兵, 王以林. 有机阳离子插层调控二维反铁磁MPX3磁性能.  , doi: 10.7498/aps.73.20232010
    [2] 谭碧, 高栋, 邓登福, 陈姝瑶, 毕磊, 刘冬华, 刘涛. Mn3Sn薄膜磁相变的输运表征.  , doi: 10.7498/aps.73.20231766
    [3] 王宁, 黄峰, 陈盈, 朱国锋, 苏浩斌, 郭翠霞, 王向峰. 磁场诱导的TmFeO3单晶自旋重取向.  , doi: 10.7498/aps.73.20231322
    [4] 金嘉升, 马成举, 张垚, 张跃斌, 鲍士仟, 李咪, 李东明, 刘洺, 刘芊震, 张贻歆. 基于相变材料的慢光和吸收可切换多功能太赫兹超材料.  , doi: 10.7498/aps.72.20222336
    [5] 杨泽浩, 刘紫威, 杨博, 张成龙, 蔡宸, 祁志美. 基于多孔金膜的太赫兹导模共振生化传感特性仿真.  , doi: 10.7498/aps.71.20220722
    [6] 闫忠宝, 孙帅, 张帅, 张尧, 史伟, 盛泉, 史朝督, 张钧翔, 张贵忠, 姚建铨. 二氧化钒相变对太赫兹反谐振光纤谐振特性的影响及其应用.  , doi: 10.7498/aps.70.20210084
    [7] 龙洁, 李九生. 相变材料与超表面复合结构太赫兹移相器.  , doi: 10.7498/aps.70.20201495
    [8] 张朋, 刘政, 戴建明, 杨昭荣, 苏付海. 强磁场在ZnCr2Se4中诱导的各向异性太赫兹共振吸收.  , doi: 10.7498/aps.69.20201507
    [9] 任壮, 成龙, 谢尔盖·固瑞特斯基, 那泽亚·柳博奇科, 李江涛, 尚加敏, 谢尔盖·巴里洛, 武安华, 亚历山大·卡拉什尼科娃, 马宗伟, 周春, 盛志高. Ho1–xYxFeO3单晶自旋重取向的掺杂效应与磁控效应的太赫兹光谱.  , doi: 10.7498/aps.69.20201518
    [10] 杨晨, 左冠华, 田壮壮, 张玉驰, 张天才. 线极化Bell-Bloom测磁系统中抽运光对磁场灵敏度的影响.  , doi: 10.7498/aps.68.20190030
    [11] 郝志红, 王海英, 张荃, 莫兆军. Eu0.9M0.1TiO3(M=Ca,Sr,Ba,La,Ce,Sm)的磁性和磁热效应.  , doi: 10.7498/aps.67.20181750
    [12] 杨静洁, 赵金良, 许磊, 张红国, 岳明, 刘丹敏, 蒋毅坚. 间隙原子H,B,C对LaFe11.5Al1.5化合物磁性和磁热效应的影响.  , doi: 10.7498/aps.67.20172250
    [13] 彭世杰, 刘颖, 马文超, 石发展, 杜江峰. 基于金刚石氮-空位色心的精密磁测量.  , doi: 10.7498/aps.67.20181084
    [14] 张克涵, 阎龙斌, 闫争超, 文海兵, 宋保维. 基于磁共振的水下非接触式电能传输系统建模与损耗分析.  , doi: 10.7498/aps.65.048401
    [15] 郭展, 范飞, 白晋军, 牛超, 常胜江. 基于磁光子晶体的磁控可调谐太赫兹滤波器和开关.  , doi: 10.7498/aps.60.074218
    [16] 范飞, 郭展, 白晋军, 王湘晖, 常胜江. 多功能磁光子晶体太赫兹可调偏振控制器件.  , doi: 10.7498/aps.60.084219
    [17] 李磊, 周庆莉, 施宇蕾, 赵冬梅, 张存林, 赵昆, 田璐, 赵卉, 宝日玛, 赵嵩卿. 在太赫兹波段的开口共振环的不同开口形状对透过率频谱的影响.  , doi: 10.7498/aps.60.019503
    [18] 张立刚, 陈 静, 朱伯铨, 李亚伟, 汪汝武, 李云宝, 张国宏, 李 钰. NaZn13型结构LaFe13-xAlxCy化合物的磁熵变与磁相变的研究.  , doi: 10.7498/aps.55.5506
    [19] 金属间化合物DyMn2Ge2的自发磁相变和场诱导的磁相变.  , doi: 10.7498/aps.50.313
    [20] 郭光华, R.Z.LEVITIN. 金属间化合物RMn2Ge2(R=La,Pr,Nd,Sm,Gd,Tb和Y)中的自发磁相变 及相变时的磁弹性异常.  , doi: 10.7498/aps.49.1838
计量
  • 文章访问数:  25
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 上网日期:  2025-02-21

/

返回文章
返回
Baidu
map