搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于可饱和吸收体锁模激光器中的呼吸子

侯刘敏 侯云龙 刘圆凯 李渊华 林佳 陈险峰

引用本文:
Citation:

基于可饱和吸收体锁模激光器中的呼吸子

侯刘敏, 侯云龙, 刘圆凯, 李渊华, 林佳, 陈险峰
cstr: 32037.14.aps.74.20241505

Breathers in mode-locked lasers based on saturable absorbers

HOU Liumin, HOU Yunlong, LIU Yuankai, LI Yuanhua, LIN Jia, CHEN Xianfeng
cstr: 32037.14.aps.74.20241505
科大讯飞全文翻译 (iFLYTEK Translation)
PDF
HTML
导出引用
  • 呼吸子作为一种独特的非线性脉冲现象, 在激光器性能优化、非线性光学过程研究以及复杂信号传输中发挥着关键作用. 与稳定孤子不同, 呼吸子脉冲的能量随着时间发生周期性波动, 表现为脉冲频率和振幅的周期性变化. 通过适当的非线性效应, 激光器能够产生稳定的呼吸子脉冲, 实现呼吸锁模状态, 展现出类似“呼吸”的周期性模式. 基于此, 本文设计并搭建了一台基于可饱和吸收体作为锁模元件的光纤激光器, 并在较低泵浦功率下成功观察到稳定的呼吸态. 通过利用高速探测技术和时间拉伸色散傅里叶变换(TS-DFT)技术, 对快速脉冲进行了时间放大和频谱分析, 并实时监测呼吸子脉冲在时域和频域上的演化过程. 实验结果表明, 泵浦功率的变化显著地影响附加振荡引发的周期性调制, 从而调控呼吸比, 直至形成稳定的孤子. 当泵浦功率达到470480 mW时, 实验首次观察到呼吸子的形成, 其呼吸比高达4.5. 随着泵浦功率的增加, 呼吸效应逐渐减弱, 并在510 mW时完全消失, 呼吸比降至1. 这一结果验证了泵浦功率对呼吸子状态及其转变过程的关键控制作用, 为超快激光技术和非线性光学领域提供新视角.
    Breathing pulses, as a unique nonlinear pulse phenomenon, play a key role in optimizing laser performance, nonlinear optical processes, and complex signal transmission. Unlike stable solitons, the breathing pulses fluctuates in energy periodically with time, and both pulse frequency and amplitude exhibit periodic changes. Through appropriate nonlinear effects, lasers can generate stable breathing pulses, achieving a mode-locked state that exhibits a periodic “breathing” pattern. Based on this, a fiber laser combining a saturable absorber as the mode-locking element is designed and built, and stable breathing states are successfully observed at lower pump power levels. High-speed detection techniques and time-stretched dispersive Fourier transform (TS-DFT) technology are used to time-amplify and spectrally analyze the rapid pulses, while monitoring the evolution of the breathing pulse in both time domain and frequency domain. Experimental results indicate that the change in pump power significantly affects the periodic modulation induced by additional oscillations, thereby controlling the breathing ratio and ultimately resulting in the formation of a stable soliton. When the pump power is between 470 and 480 mW, the formation of the breathing pulse is first observed, with a breathing ratio of up to 4.5. As the pump power increases, the breathing effect gradually diminishes, and at 510 mW, it completely disappears, with the breathing ratio dropping to 1.These results confirm the critical role of pump power in controlling the breathing pulse state and its transition, demonstrating the potential of controlling pump power in ultrafast laser technology and nonlinear optics. The breathing pulse phenomenon, as a periodic pulse behavior, reflects the complex dynamical characteristics between nonlinear optical effects and cavity parameters. Combined with the natural synchronization system formed between the breathing frequency and the cavity frequency (determined by the cavity length), the periodic change of the breathing pulse becomes a crucial factor for controlling laser output. By adjusting parameters such as the laser’s nonlinearity and dissipation, the characteristics of the breathing pulse and breathing ratio can be precisely controlled, thus achieving precise control of the laser output. The periodic oscillatory characteristics of the breathing pulse inside the laser cavity lead to the non-uniform distribution of pulses, a feature that demonstrates enormous potential in pulse shaping, ultrashort pulse generation, and precise frequency comb control. Additionally, the presence of the breathing pulse may affect the stability and energy conversion efficiency of the laser, providing new perspectives for designing and optimizing lasers.
      通信作者: 李渊华, lyhua1984@shiep.edu.cn ; 林佳, jlin@shiep.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 12074155, 62375164)资助的课题.
      Corresponding author: LI Yuanhua, lyhua1984@shiep.edu.cn ; LIN Jia, jlin@shiep.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 12074155, 62375164).
    [1]

    Ma Q Y, Yu H Y 2023 Nanomanuf. Metrol. 6 36Google Scholar

    [2]

    Li Z X, Cao H Y, Wang Y Y, Dai C Q 2023 IEEE J. Sel. Top. Quantum Electron. 29 1100108Google Scholar

    [3]

    Shimizu Y 2021 Nanomanuf. Metrol. 4 3Google Scholar

    [4]

    Murakoshi H, Ueda H H, Goto R, Hamada K, Nagasawa Y, Fuji T 2023 Biomed. Opt. Express 14 326Google Scholar

    [5]

    Liu F, Zhang Y, Wu X D, Li J F, Yan F, Li X H 2020 IEEE Photonics J. 12 1500910Google Scholar

    [6]

    Keller U 2003 Nature 424 831Google Scholar

    [7]

    Matniyaz T, Kong F, Kalichevsky-Dong M T, Dong L 2020 Opt. Lett. 45 2910Google Scholar

    [8]

    王慧慧, 郭睿 2019 应用数学进展 8 2084Google Scholar

    Wang H H, Guo R 2019 Adv. Appl. Math. 8 2084Google Scholar

    [9]

    Chen T, Zhang Q L, Zhang Y P, Li X, Zhang H K, Xia W 2018 Photonics Res. 6 1033Google Scholar

    [10]

    Liu X M 2011 Phys. Rev. A 84 053828Google Scholar

    [11]

    Wu X Q, Peng J S, Boscolo S, Finot C, Zeng H P 2023 Phys. Rev. Lett. 131 263802Google Scholar

    [12]

    Cui Y D, Zhang Y S, Huang L, Zhang A G, Liu Z M, Kuang C F, Tao C N, Chen D R, Liu X, Malomed B A 2023 Phys. Rev. Lett. 130 153801Google Scholar

    [13]

    吴修齐, 彭俊松, 张颖, 曾和平 2023 中国激光 50 1101006Google Scholar

    Wu X Q, Peng J S, Zhang Y, Zeng H P 2023 Chin. J. Lasers 50 1101006Google Scholar

    [14]

    Grelu P, Akhmediev N 2012 Nat. Photonics 6 84Google Scholar

    [15]

    Guo W Q, Zhang L, Xiao X S, Li X X, Yin Z G, Ning H, Zhang X, Zhang X W 2023 Photonics 10 610Google Scholar

    [16]

    Xian T H, Zhan L, Wang W C, Zhang W Y 2020 Phys. Rev. Lett. 125 163901Google Scholar

    [17]

    Peng J S, Boscolo S, Zhao Z, Zeng H P 2019 Sci. Adv. 5 11Google Scholar

    [18]

    Herink G, Kurtz F, Jalali B, Solli D R, Ropers C 2017 Science 356 50Google Scholar

    [19]

    Apicella B, Bruno A, Wang X, Spinelli N 2013 Int. J. Mass Spectrom. 338 30Google Scholar

    [20]

    Cui Y D, Zhang Y S, Song Y J, Tong L, Huang L, Qiu J R, Liu X M 2021 Laser Photonics Rev. 15 2000216Google Scholar

    [21]

    Lucas E, Karpov M, Guo H, Gorodetsky M L, Kippenberg T J 2017 Nat. Commun. 8 736Google Scholar

    [22]

    Qin Z P, Xie G Q, Gu H A, Hai T, Yuan P, Ma J G, Qian L J 2019 Adv. Photonics 1 065001Google Scholar

    [23]

    Auer G, Dammann A, Sand S 2003 Proceedings of the 14th IEEE International Symposium on Personal, Indoor and Mobile Radio Communications Beijing, China, September 7–10, 2003 pp1954–1958

    [24]

    Schafer R W 2011 IEEE Signal Process. Mag. 28 111Google Scholar

    [25]

    黄旭方, 陈静开, 覃新贤 2012 电讯技术 52 1893Google Scholar

    Huang X F, Chen J K, Qin X X 2012 Telecommun. Eng. 52 1893Google Scholar

    [26]

    Woodward R I, Kelleher E J R 2015 Appl. Sci. 5 1440Google Scholar

    [27]

    江俊林, 乐文杰, 王玮琦, 丁翌辰, 吴波, 沈永行 2018 光子学报 47 0914001Google Scholar

    Jiang J L, Le W J, Wang W Q, Ding Y C, Wu B, Shen Y X 2018 Acta Photonica Sin. 47 0914001Google Scholar

    [28]

    Hu F T, Vinod A K, Wang W, Chin H H, McMillan J F, Zhan Z Y, Meng Y, Gong M, Wong C W 2024 Light Sci. Appl. 13 251Google Scholar

  • 图 1  实验装置示意图

    Fig. 1.  Schematic of the experimental setup.

    图 2  (a) 每个单次激发光谱的傅里叶变换; (b) 时间平均自相关宽度的测量结果; (c) 一个振荡周期内最大往返次数与最小往返次数单激发光谱; (d) 频谱特征; (e) 示波器记录的实验测量脉冲序列

    Fig. 2.  (a) Fourier transform of each single excitation spectrum; (b) measurement of time-averaged autocorrelation width; (c) the maximum and minimum round-trip numbers within one oscillation period of a single-excitation spectrum; (d) spectral characteristics; (e) experimental measurement pulse sequences recorded by an oscilloscope.

    图 3  呼吸子在470510 mW泵浦功率范围内的高速动力学演化过程及其相对于1600次连续往返的时域演化 (a) Pp=470 mW; (b) Pp = 480 mW; (c) Pp = 490 mW; (d) Pp = 500 mW; (e) Pp = 506 mW; (d) Pp = 510 mW

    Fig. 3.  The high-speed dynamical evolution of the breath pulse in the pump power range from 470 to 510 mW, and its temporal evolution relative to 1600 continuous round trips: (a) Pp = 470 mW; (b) Pp = 480 mW; (c) Pp = 490 mW; (d) Pp = 500 mW; (e) Pp = 506 mW; (f) Pp = 510 mW.

    图 4  (a), (d) Pp = 480 mW未形成呼吸子状态下的脉冲强度和相位变化; (b), (e) Pp = 506 mW呼吸子稳定状态的脉冲强度和相位变化; (c), (f) Pp = 510 mW孤子状态下的脉冲强度和相位变化

    Fig. 4.  (a), (d) The pulse intensity and phase variations at Pp = 480 mW in the non-breather state; (b), (e) the pulse intensity and phase variations at Pp = 506 mW in the stable breather state; (c), (f) the pulse intensity and phase variations at Pp = 510 mW in the soliton state.

    Baidu
  • [1]

    Ma Q Y, Yu H Y 2023 Nanomanuf. Metrol. 6 36Google Scholar

    [2]

    Li Z X, Cao H Y, Wang Y Y, Dai C Q 2023 IEEE J. Sel. Top. Quantum Electron. 29 1100108Google Scholar

    [3]

    Shimizu Y 2021 Nanomanuf. Metrol. 4 3Google Scholar

    [4]

    Murakoshi H, Ueda H H, Goto R, Hamada K, Nagasawa Y, Fuji T 2023 Biomed. Opt. Express 14 326Google Scholar

    [5]

    Liu F, Zhang Y, Wu X D, Li J F, Yan F, Li X H 2020 IEEE Photonics J. 12 1500910Google Scholar

    [6]

    Keller U 2003 Nature 424 831Google Scholar

    [7]

    Matniyaz T, Kong F, Kalichevsky-Dong M T, Dong L 2020 Opt. Lett. 45 2910Google Scholar

    [8]

    王慧慧, 郭睿 2019 应用数学进展 8 2084Google Scholar

    Wang H H, Guo R 2019 Adv. Appl. Math. 8 2084Google Scholar

    [9]

    Chen T, Zhang Q L, Zhang Y P, Li X, Zhang H K, Xia W 2018 Photonics Res. 6 1033Google Scholar

    [10]

    Liu X M 2011 Phys. Rev. A 84 053828Google Scholar

    [11]

    Wu X Q, Peng J S, Boscolo S, Finot C, Zeng H P 2023 Phys. Rev. Lett. 131 263802Google Scholar

    [12]

    Cui Y D, Zhang Y S, Huang L, Zhang A G, Liu Z M, Kuang C F, Tao C N, Chen D R, Liu X, Malomed B A 2023 Phys. Rev. Lett. 130 153801Google Scholar

    [13]

    吴修齐, 彭俊松, 张颖, 曾和平 2023 中国激光 50 1101006Google Scholar

    Wu X Q, Peng J S, Zhang Y, Zeng H P 2023 Chin. J. Lasers 50 1101006Google Scholar

    [14]

    Grelu P, Akhmediev N 2012 Nat. Photonics 6 84Google Scholar

    [15]

    Guo W Q, Zhang L, Xiao X S, Li X X, Yin Z G, Ning H, Zhang X, Zhang X W 2023 Photonics 10 610Google Scholar

    [16]

    Xian T H, Zhan L, Wang W C, Zhang W Y 2020 Phys. Rev. Lett. 125 163901Google Scholar

    [17]

    Peng J S, Boscolo S, Zhao Z, Zeng H P 2019 Sci. Adv. 5 11Google Scholar

    [18]

    Herink G, Kurtz F, Jalali B, Solli D R, Ropers C 2017 Science 356 50Google Scholar

    [19]

    Apicella B, Bruno A, Wang X, Spinelli N 2013 Int. J. Mass Spectrom. 338 30Google Scholar

    [20]

    Cui Y D, Zhang Y S, Song Y J, Tong L, Huang L, Qiu J R, Liu X M 2021 Laser Photonics Rev. 15 2000216Google Scholar

    [21]

    Lucas E, Karpov M, Guo H, Gorodetsky M L, Kippenberg T J 2017 Nat. Commun. 8 736Google Scholar

    [22]

    Qin Z P, Xie G Q, Gu H A, Hai T, Yuan P, Ma J G, Qian L J 2019 Adv. Photonics 1 065001Google Scholar

    [23]

    Auer G, Dammann A, Sand S 2003 Proceedings of the 14th IEEE International Symposium on Personal, Indoor and Mobile Radio Communications Beijing, China, September 7–10, 2003 pp1954–1958

    [24]

    Schafer R W 2011 IEEE Signal Process. Mag. 28 111Google Scholar

    [25]

    黄旭方, 陈静开, 覃新贤 2012 电讯技术 52 1893Google Scholar

    Huang X F, Chen J K, Qin X X 2012 Telecommun. Eng. 52 1893Google Scholar

    [26]

    Woodward R I, Kelleher E J R 2015 Appl. Sci. 5 1440Google Scholar

    [27]

    江俊林, 乐文杰, 王玮琦, 丁翌辰, 吴波, 沈永行 2018 光子学报 47 0914001Google Scholar

    Jiang J L, Le W J, Wang W Q, Ding Y C, Wu B, Shen Y X 2018 Acta Photonica Sin. 47 0914001Google Scholar

    [28]

    Hu F T, Vinod A K, Wang W, Chin H H, McMillan J F, Zhan Z Y, Meng Y, Gong M, Wong C W 2024 Light Sci. Appl. 13 251Google Scholar

  • [1] 姚慧, 张海强, 熊玮玥. 椭圆函数背景下Gerdjikov-Ivanov方程的多呼吸子.  , 2024, 73(4): 040201. doi: 10.7498/aps.73.20231590
    [2] 郑立, 田文龙, 马骏逸, 于洋, 徐晓东, 韩海年, 魏志义, 朱江峰. GHz重复频率亚百飞秒克尔透镜锁模Yb:CaYAlO4激光器.  , 2023, 72(6): 064202. doi: 10.7498/aps.72.20222297
    [3] 叶志斌, 江舒, 王海伦, 吴飞, 邓小雷, 王建晓. 直接液体冷却薄片激光器中抽运光均匀性对光束波前畸变的影响.  , 2022, 71(5): 054202. doi: 10.7498/aps.71.20211811
    [4] 叶志斌, 江舒, 王海伦, 吴飞, 邓小雷, 王建晓. 直接液体冷却薄片激光器中抽运光均匀性对光束波前畸变的影响研究.  , 2021, (): . doi: 10.7498/aps.70.20211811
    [5] 白瑞雪, 杨珏晗, 魏大海, 魏钟鸣. 低维半导体材料在非线性光学领域的研究进展.  , 2020, 69(18): 184211. doi: 10.7498/aps.69.20200206
    [6] 颜森林. 激光混沌并行串联同步及其在中继器保密通信系统中的应用.  , 2019, 68(17): 170502. doi: 10.7498/aps.68.20190212
    [7] 秦璐, 任杰, 许兴胜. 垂直腔面发射激光器低温光电特性.  , 2019, 68(19): 194203. doi: 10.7498/aps.68.20190427
    [8] 颜森林. 半导体激光器混沌法拉第效应控制方法.  , 2015, 64(24): 240505. doi: 10.7498/aps.64.240505
    [9] 顾小卫. 带光速调管的高增益高次谐波振荡器自由电子激光模拟.  , 2013, 62(9): 094102. doi: 10.7498/aps.62.094102
    [10] 陆大全, 胡巍. 椭圆响应强非局域非线性介质中的二维异步分数傅里叶变换及光束传输特性.  , 2013, 62(8): 084211. doi: 10.7498/aps.62.084211
    [11] 陆大全, 胡巍. 强非局域非线性介质中强光导引的弱光呼吸子传输规律研究.  , 2013, 62(3): 034205. doi: 10.7498/aps.62.034205
    [12] 杨新荣, 徐波, 赵国晴, 申晓志, 史淑惠, 李洁, 王占国. InP基近红外波段量子线激光器的温度特性研究.  , 2012, 61(21): 216802. doi: 10.7498/aps.61.216802
    [13] 白扬博, 向望华, 祖鹏, 张贵忠. 基于体光栅的被动锁模可调谐线型腔掺镱光纤激光器.  , 2012, 61(21): 214208. doi: 10.7498/aps.61.214208
    [14] 冯野, 杨毅彪, 王安帮, 王云才. 利用半导体激光器环产生27 GHz的平坦宽带混沌激光.  , 2011, 60(6): 064206. doi: 10.7498/aps.60.064206
    [15] 颜森林. 外腔延时反馈半导体激光器混沌偏振可调控制方法研究.  , 2008, 57(11): 6878-6882. doi: 10.7498/aps.57.6878
    [16] 颜森林. 半导体激光器混沌光电延时负反馈控制方法研究.  , 2008, 57(4): 2100-2106. doi: 10.7498/aps.57.2100
    [17] 颜森林, 汪胜前. 激光混沌串联同步以及混沌中继器系统理论研究.  , 2006, 55(4): 1687-1695. doi: 10.7498/aps.55.1687
    [18] 颜森林. 注入半导体激光器混沌调制性能与内部相位键控编码方法研究.  , 2006, 55(12): 6267-6274. doi: 10.7498/aps.55.6267
    [19] 颜森林. 注入半导体激光器混沌相位周期控制方法研究.  , 2006, 55(10): 5109-5114. doi: 10.7498/aps.55.5109
    [20] 徐 权, 田 强. 一维分子链中激子与声子的相互作用和呼吸子解 .  , 2004, 53(9): 2811-2815. doi: 10.7498/aps.53.2811
计量
  • 文章访问数:  626
  • PDF下载量:  27
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-10-27
  • 修回日期:  2024-12-06
  • 上网日期:  2024-12-25
  • 刊出日期:  2025-02-20

/

返回文章
返回
Baidu
map