搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于优势提纯技术的片上量子密钥分发实验验证

章瑞 田雨 张斌 陈高辉 丁华建 周星宇 王琴

引用本文:
Citation:

基于优势提纯技术的片上量子密钥分发实验验证

章瑞, 田雨, 张斌, 陈高辉, 丁华建, 周星宇, 王琴
cstr: 32037.14.aps.74.20241375

Experimental verification of on-chip quantum key distribution based on advantage distillation

ZHANG Rui, TIAN Yu, ZHANG Bin, CHEN Gaohui, DING Huajian, ZHOU Xingyu, WANG Qin
cstr: 32037.14.aps.74.20241375
科大讯飞全文翻译 (iFLYTEK Translation)
PDF
HTML
导出引用
  • 优势提纯提供了一种从弱关联性比特对中提取强关联性比特对的有效方法, 已被广泛应用于多种量子密钥分发协议. 然而, 该方法的增益效果主要体现在远距离密钥传输中, 目前在实验系统中尚未得到充分验证. 本文将优势提纯方法应用于三强度诱骗态BB84协议, 并基于SiO2的非对称马赫-曾德尔干涉仪构建实验平台进行验证. SiO2光波导芯片具有低耦合损耗和低波导传输损耗的优点. 实验结果表明, 在105 km的传输距离下, 系统安全密钥率达到了59 bits/s, 充分证明了优势提纯方法在提升量子密钥分发系统性能方面的重要作用.
    Quantum key distribution (QKD) has been extensively studied for practical applications. Advantage distillation (AD) represents a key technique to extract highly correlated bit pairs from weakly correlated ones, thus improving QKD protocol performance, particularly in large-error scenarios. However, its practical implementation remains under-explored. In this study, the AD is integrated into the three-intensity decoy-state BB84 protocol and its performance is demonstrated on a high-speed phase-encoding platform. The experimental system employs an asymmetric Mach-Zehnder interferometer (AMZI) fabricated on a silicon dioxide optical waveguide chip for phase encoding, which is benefited from its low coupling loss and minimum waveguide transmission loss. Phase-randomized weak coherent pulses, generated by a distributed feedback laser at 625 MHz, are modulated into decoy states of varying intensities. The signals are encoded via an AMZI and attenuated to single-photon levels before transmission. At the receiver, another AMZI demodulates the signals detected by avalanche photodiodes in gated mode. Experiments conducted at 50 km and 105 km demonstrate secure key rates of 104 kbits/s and 59 bits/s, respectively. The results at shorter distances closely match theoretical predictions, while slight deviations at 105 km are attributed to signal attenuation and noise. Despite these challenges, the results obtained at 105 km highlight the effectiveness of AD in enhancing secure key rates in the large-error scenario. This study confirms the potential of AD in extending secure communication range of QKD. By leveraging the high integration and scalability of silicon dioxide photonic chips, the proposed system lays a foundation for large-scale QKD deployment, paving the way for developing advanced protocols and real-world quantum networks.
      通信作者: 王琴, qinw@njupt.edu.cn
    • 基金项目: 江苏省重点研发计划产业前瞻与关键核心技术项目(批准号: BE2022071)资助的课题.
      Corresponding author: WANG Qin, qinw@njupt.edu.cn
    • Funds: Project supported by the Industrial Prospect and Key Core Technology Projects of Jiangsu Provincial Key R&D Program, China (Grant No. BE2022071).
    [1]

    Bennett C H, Brassard G 2014 Theoret. Comput. Sci. 560 7Google Scholar

    [2]

    Lo H K, Chau H F 1999 Science 283 2050Google Scholar

    [3]

    Shor P W 2000 Phys. Rev. Lett. 85 441Google Scholar

    [4]

    Mayers D 2001 Journal of the ACM 48 3Google Scholar

    [5]

    Wang X B 2005 Phy. Rev. Lett. 94 230503Google Scholar

    [6]

    Lo H K, Ma X F, Chen K 2005 Phy. Rev. Lett. 94 230504Google Scholar

    [7]

    Lo H K, Curty M, Qi B 2012 Phys. Rev. Lett. 108 130503Google Scholar

    [8]

    Braunstein S L, Pirandola S 2012 Phys. Rev. Lett. 108 130502Google Scholar

    [9]

    Lucamarini M, Yuan Z L, Dynes J F, Shields A 2018 Nature 557 400Google Scholar

    [10]

    Wang X B, Yu Z W, Hu X L 2018 Phys. Rev. A 98 062323Google Scholar

    [11]

    Cui C, Yin Z Q, Wang R, Chen W, Wang S, Guo G C, Han Z F 2019 Phys. Rev. Appl. 11 034053Google Scholar

    [12]

    Curty M, Azuma K, Lo H K 2019 npj Quantum Inf. 5 64Google Scholar

    [13]

    Ma X F, Zeng P, Zhou H Y 2018 Phys. Rev. X 8 031043Google Scholar

    [14]

    Zeng P, Zhou H Y, Wu W, Ma X 2022 Nat. Commun. 13 3903Google Scholar

    [15]

    Xie Y M, Lu Y S, Weng C X, Yin H L, Chen Z B 2022 PRX Quantum 3 020315Google Scholar

    [16]

    Maurer U M 1999 IEEE Trans. Inf. Theory 39 733Google Scholar

    [17]

    Renner R 2008 Int. J. Quantum Inf. 6 1Google Scholar

    [18]

    Li H W, Zhang C M, Jiang M S, Cai Q Y 2022 Commun. Phys. 5 53Google Scholar

    [19]

    Wang R Q, Zhang C M, Yin Z Q, Li H W, Wang S, Chen W, Guo G C, Han Z F 2022 New J. Phys. 24 073049Google Scholar

    [20]

    Li H W, Wang R Q, Zhang C M, Cai Q Y 2023 Quantum 7 1201Google Scholar

    [21]

    Zhang K, Liu J, Ding H, Zhang C H, Wang Q 2023 Entropy 25 1174Google Scholar

    [22]

    Boaron A, Boso G, Rusca D, Vulliez C, Autebert C, Caloz M, Perrenoud M, Gras G, Bussiѐres F, Li M J, Nolan D, Martin A, Zbinden H 2018 Phys. Rev. Lett. 121 190502Google Scholar

    [23]

    Yuan Z, Plews A, Takahashi R, Doi K, Tam W, Sharpe A, Dixon A, Lavelle E, Dynes J, Murakami A, Kujiraoka M, Lucamarini M, Tanizawa Y, Sato H, Shields A 2018 J. Light. Technol. 36 3427Google Scholar

    [24]

    Li W, Zhang L K, Tan H, Lu Y C, Liao S K, Huang J, Li H, Wang Z, Mao H K, Yan B Z, Li Q, Liu Y, Zhang Q, Peng C Z, You L X, Xu F H, Pan J W 2023 Nat. Photonics 17 416Google Scholar

    [25]

    Zhang G W, Chen W, Fan-Yuan G J, Zhang L, Wang F X, Wang S, Yin Z Q, He D Y, Liu W, An J M, Guo G C, Han Z F 2022 Sci. China Inf. Sci. 65 200506Google Scholar

    [26]

    Wu D, Zhang C X, Zhang J S, Wang Y, Chen W, Wu Y D, An J M 2024 Opt. Commun. 564 130597Google Scholar

    [27]

    Zhu J L, Zhou X Y, Ding H J, Liu J Y, Zhang C H, Li J, An J M, Wang Q 2025 Phys. Rev. A 111 012608Google Scholar

  • 图 1  优势提纯方法的流程图

    Fig. 1.  Flow chart of the advantage distillation.

    图 2  BB84 QKD系统实验装置结构示意图, 其中Laser为激光器模块, IM为强度调制器, AMZI为非对称马赫-曾德尔干涉仪, APD为探测器模块, TDC为时间数字转换器

    Fig. 2.  Schematic diagram of the experimental setup for BB84 QKD system, where Laser is the laser module, IM is the intensity modulator, AMZI is the low-loss unbalanced Mach-Zehnder interferometer chip, APD denotes the avalanche photodiode detector module, and TDC is the time-to-digital converter.

    图 3  非对称马赫-曾德尔干涉仪原理图

    Fig. 3.  Schematic diagram of the asymmetric Mach-Zehnder interferometer.

    图 4  非对称马赫-曾德尔干涉仪实物图

    Fig. 4.  Physical picture of the asymmetric Mach-Zehnder interferometer.

    图 5  基于AD技术的BB84协议的理论与实验密钥率对比图

    Fig. 5.  Comparison between theoretical and experimental key rates of BB84 protocol based on AD technology.

    图 6  基于AD技术的BB84协议的理论与实验最优值$ b $

    Fig. 6.  Theoretical and experimental optimal values $ b $ of BB84 protocol based on AD technology.

    表 1  实验数据

    Table 1.  Experimental data.

    50 km (10 dB) 105 km (21 dB)
    类型 理论数值 实验数据 理论数值 实验数据
    $u$ 0.66653 0.64151
    $v$ 0.04537 0.07259
    ${P_u}$ 0.97000 0.94795
    ${P_v}$ 0.02190 0.03627
    $ Q_{u} $ $ 7.195\times {10}^{-4} $ $ 7.1084\times {10}^{-4} $ $ 5.692\times {10}^{-5} $ $ 5.2736\times {10}^{-5} $
    $ Q_{v} $ $ 8.006\times {10}^{-5} $ $ 7.5179\times {10}^{-5} $ $ 1.714\times {10}^{-5} $ $ 1.6844\times {10}^{-5} $
    $ E_{u} $ $ 0.01403 $ $ 0.01220 $ $ 0.06510 $ $ 0.085985 $
    $ E_{v} $ $ 0.04623 $ $ 0.05180 $ $ 0.1930 $ $ 0.2109 $
    $ Y_{1} $ $ 9.481\times {10}^{-4} $ $ 8.756\times {10}^{-4} $ $ 7.719\times {10}^{-5} $ $ 7.7438\times {10}^{-5} $
    $ e_{1} $ $ 0.02064 $ $ 0.02562 $ $ 0.0715 $ $ 0.0974 $
    $ R $ $ 115700 $ $ 104260 $ $ 389.0636 $ $ 59.3501 $
    下载: 导出CSV
    Baidu
  • [1]

    Bennett C H, Brassard G 2014 Theoret. Comput. Sci. 560 7Google Scholar

    [2]

    Lo H K, Chau H F 1999 Science 283 2050Google Scholar

    [3]

    Shor P W 2000 Phys. Rev. Lett. 85 441Google Scholar

    [4]

    Mayers D 2001 Journal of the ACM 48 3Google Scholar

    [5]

    Wang X B 2005 Phy. Rev. Lett. 94 230503Google Scholar

    [6]

    Lo H K, Ma X F, Chen K 2005 Phy. Rev. Lett. 94 230504Google Scholar

    [7]

    Lo H K, Curty M, Qi B 2012 Phys. Rev. Lett. 108 130503Google Scholar

    [8]

    Braunstein S L, Pirandola S 2012 Phys. Rev. Lett. 108 130502Google Scholar

    [9]

    Lucamarini M, Yuan Z L, Dynes J F, Shields A 2018 Nature 557 400Google Scholar

    [10]

    Wang X B, Yu Z W, Hu X L 2018 Phys. Rev. A 98 062323Google Scholar

    [11]

    Cui C, Yin Z Q, Wang R, Chen W, Wang S, Guo G C, Han Z F 2019 Phys. Rev. Appl. 11 034053Google Scholar

    [12]

    Curty M, Azuma K, Lo H K 2019 npj Quantum Inf. 5 64Google Scholar

    [13]

    Ma X F, Zeng P, Zhou H Y 2018 Phys. Rev. X 8 031043Google Scholar

    [14]

    Zeng P, Zhou H Y, Wu W, Ma X 2022 Nat. Commun. 13 3903Google Scholar

    [15]

    Xie Y M, Lu Y S, Weng C X, Yin H L, Chen Z B 2022 PRX Quantum 3 020315Google Scholar

    [16]

    Maurer U M 1999 IEEE Trans. Inf. Theory 39 733Google Scholar

    [17]

    Renner R 2008 Int. J. Quantum Inf. 6 1Google Scholar

    [18]

    Li H W, Zhang C M, Jiang M S, Cai Q Y 2022 Commun. Phys. 5 53Google Scholar

    [19]

    Wang R Q, Zhang C M, Yin Z Q, Li H W, Wang S, Chen W, Guo G C, Han Z F 2022 New J. Phys. 24 073049Google Scholar

    [20]

    Li H W, Wang R Q, Zhang C M, Cai Q Y 2023 Quantum 7 1201Google Scholar

    [21]

    Zhang K, Liu J, Ding H, Zhang C H, Wang Q 2023 Entropy 25 1174Google Scholar

    [22]

    Boaron A, Boso G, Rusca D, Vulliez C, Autebert C, Caloz M, Perrenoud M, Gras G, Bussiѐres F, Li M J, Nolan D, Martin A, Zbinden H 2018 Phys. Rev. Lett. 121 190502Google Scholar

    [23]

    Yuan Z, Plews A, Takahashi R, Doi K, Tam W, Sharpe A, Dixon A, Lavelle E, Dynes J, Murakami A, Kujiraoka M, Lucamarini M, Tanizawa Y, Sato H, Shields A 2018 J. Light. Technol. 36 3427Google Scholar

    [24]

    Li W, Zhang L K, Tan H, Lu Y C, Liao S K, Huang J, Li H, Wang Z, Mao H K, Yan B Z, Li Q, Liu Y, Zhang Q, Peng C Z, You L X, Xu F H, Pan J W 2023 Nat. Photonics 17 416Google Scholar

    [25]

    Zhang G W, Chen W, Fan-Yuan G J, Zhang L, Wang F X, Wang S, Yin Z Q, He D Y, Liu W, An J M, Guo G C, Han Z F 2022 Sci. China Inf. Sci. 65 200506Google Scholar

    [26]

    Wu D, Zhang C X, Zhang J S, Wang Y, Chen W, Wu Y D, An J M 2024 Opt. Commun. 564 130597Google Scholar

    [27]

    Zhu J L, Zhou X Y, Ding H J, Liu J Y, Zhang C H, Li J, An J M, Wang Q 2025 Phys. Rev. A 111 012608Google Scholar

  • [1] 罗一振, 马洛嘉, 孙铭烁, 吴思睿, 邱丽华, 王禾, 王琴. 基于监控标记单光子源的量子密钥分发协议.  , 2024, 73(24): 240302. doi: 10.7498/aps.73.20241269
    [2] 马洛嘉, 丁华建, 陈子骐, 张春辉, 王琴. 一种态制备误差容忍的量子数字签名协议.  , 2024, 73(2): 020301. doi: 10.7498/aps.73.20231190
    [3] 周江平, 周媛媛, 周学军. 非对称信道相位匹配量子密钥分发.  , 2023, 72(14): 140302. doi: 10.7498/aps.72.20230652
    [4] 周阳, 马啸, 周星宇, 张春辉, 王琴. 实用化态制备误差容忍参考系无关量子密钥分发协议.  , 2023, 72(24): 240301. doi: 10.7498/aps.72.20231144
    [5] 詹绍康, 王金东, 董双, 黄偲颖, 侯倾城, 莫乃达, 弥赏, 向黎冰, 赵天明, 於亚飞, 魏正军, 张智明. 基于四态协议的半量子密钥分发诱骗态模型的有限码长分析.  , 2023, 72(22): 220303. doi: 10.7498/aps.72.20230849
    [6] 孟杰, 徐乐辰, 张成峻, 张春辉, 王琴. 标记单光子源在量子密钥分发中的应用.  , 2022, 71(17): 170304. doi: 10.7498/aps.71.20220344
    [7] 马啸, 孙铭烁, 刘靖阳, 丁华建, 王琴. 一种基于标记单光子源的态制备误差容忍量子密钥分发协议.  , 2022, 71(3): 030301. doi: 10.7498/aps.71.20211456
    [8] 孙颖, 赵尚弘, 东晨. 基于量子存储的长距离测量设备无关量子密钥分配研究.  , 2015, 64(14): 140304. doi: 10.7498/aps.64.140304
    [9] 周飞, 雍海林, 李东东, 印娟, 任继刚, 彭承志. 基于不同介质间量子密钥分发的研究.  , 2014, 63(14): 140303. doi: 10.7498/aps.63.140303
    [10] 东晨, 赵尚弘, 赵卫虎, 石 磊, 赵顾颢. 非对称信道传输效率的测量设备无关量子密钥分配研究.  , 2014, 63(3): 030302. doi: 10.7498/aps.63.030302
    [11] 胡华鹏, 王金东, 黄宇娴, 刘颂豪, 路巍. 基于条件参量下转换光子对的非正交编码诱惑态量子密钥分发.  , 2010, 59(1): 287-292. doi: 10.7498/aps.59.287
    [12] 胡华鹏, 张 静, 王金东, 黄宇娴, 路轶群, 刘颂豪, 路 巍. 双协议量子密钥分发系统实验研究.  , 2008, 57(9): 5605-5611. doi: 10.7498/aps.57.5605
    [13] 张 静, 王发强, 赵 峰, 路轶群, 刘颂豪. 时间和相位混合编码的量子密钥分发方案.  , 2008, 57(8): 4941-4946. doi: 10.7498/aps.57.4941
    [14] 何广强, 郭红斌, 李昱丹, 朱思维, 曾贵华. 基于二进制均匀调制相干态的量子密钥分发方案.  , 2008, 57(4): 2212-2217. doi: 10.7498/aps.57.2212
    [15] 米景隆, 王发强, 林青群, 梁瑞生, 刘颂豪. 诱惑态在“双探测器”准单光子光源量子密钥分发系统中的应用.  , 2008, 57(2): 678-684. doi: 10.7498/aps.57.678
    [16] 权东晓, 裴昌幸, 朱畅华, 刘 丹. 一种新的预报单光子源诱骗态量子密钥分发方案.  , 2008, 57(9): 5600-5604. doi: 10.7498/aps.57.5600
    [17] 陈 霞, 王发强, 路轶群, 赵 峰, 李明明, 米景隆, 梁瑞生, 刘颂豪. 运行双协议相位调制的量子密钥分发系统.  , 2007, 56(11): 6434-6440. doi: 10.7498/aps.56.6434
    [18] 冯发勇, 张 强. 基于超纠缠交换的量子密钥分发.  , 2007, 56(4): 1924-1927. doi: 10.7498/aps.56.1924
    [19] 陈 杰, 黎 遥, 吴 光, 曾和平. 偏振稳定控制下的量子密钥分发.  , 2007, 56(9): 5243-5247. doi: 10.7498/aps.56.5243
    [20] 何广强, 易 智, 朱 俊, 曾贵华. 基于双模压缩态的量子密钥分发方案.  , 2007, 56(11): 6427-6433. doi: 10.7498/aps.56.6427
计量
  • 文章访问数:  573
  • PDF下载量:  16
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-09-29
  • 修回日期:  2024-11-19
  • 上网日期:  2024-12-25
  • 刊出日期:  2025-02-20

/

返回文章
返回
Baidu
map