搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

非对称信道传输效率的测量设备无关量子密钥分配研究

东晨 赵尚弘 赵卫虎 石 磊 赵顾颢

引用本文:
Citation:

非对称信道传输效率的测量设备无关量子密钥分配研究

东晨, 赵尚弘, 赵卫虎, 石 磊, 赵顾颢

Analysis of measurement device independent quantum key distribution with an asymmetric channel transmittance efficiency

Dong Chen, Zhao Shang-Hong, Zhao Wei-Hu, Shi Lei, Zhao Gu-Hao
PDF
导出引用
  • 测量设备无关量子密钥分配方案可以移除所有的探测器侧信道漏洞,通过结合诱骗态方案可以生成无条件安全的密钥. 本文研究了非对称信道传输效率下三强度诱骗态测量设备无关量子密钥分配系统的密钥生成率与信道传输损耗的关系,比较了对称信道传输效率和非对称信道传输效率下的距离比率对单边传输效率、单光子误码率和量子密钥生成率的影响,仿真结果表明随着信道不匹配度逐渐增加,可容忍信道传输损耗由对称信道情形下的62 dB分别降至38 dB(距离比率为0.5)和17 dB(距离比率为0.1),能够安全提取密钥的可容忍传输损耗下降较快,密钥生成率的安全传输距离也随之降低. 实验中可以采取调节信号光强度的方式提高非对称传输效率下测量设备无关量子密钥分配系统的密钥生成率,为实用的量子密钥分配实验提供了重要的理论参数.
    Measurement-device-independent quantum key distribution is immune from all the detection attacks, thus when it is combined with the decoy state method, the final key is unconditional secure. In this paper, the performance of three-intensity decoy state measurement-device-independent quantum key distribution at an asymmetric channel transmittance efficiency is considered and compared with each other at the symmetric choice scenario. Simulation result shows that the key rate at the symmetric scenario can tolerate 62 dB channel loss, otherwise when the distance ratio changes, the tolerated channel loss will decrease to 37 dB and 19 dB. A method to choose the optimal intensity is proposed for asymmetric channel transmittance regardless of distance ratio, which can be easily adapted to practical experimental settings.
    • 基金项目: 国家自然科学基金(批准号:61106068)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61106068).
    [1]

    Bennet C H, Brassard G 1984 Proc IEEE International Conference Computers, Systems, and Signal Processing Bangalore, India, December 9–12, 1984, p175–179

    [2]

    Shor P W, Preskill J 2000 Phys. Rev. Lett. 85 441

    [3]

    Mayers D 2001 Journal of the ACM 48 351

    [4]

    Gottesman D, Lo H K, Lutkenhaus N, Preskill J 2004 Quantum Infor. Comput 4 325

    [5]

    Zhou Y Y, Zhou X T, Tian P G, Wang Y J 2013 Chin. Phys. B 22 010305

    [6]

    Sheng Y B, Zhou L, Cheng W W, Gong L Y, Wang L, Zhan S M 2013 Chin. Phys. B 22 030314

    [7]

    Wang J D, Qin X J, Wei Z J, Liu X B, Liao C J, Liu S H 2010 Acta Phys. Sin. 59 281 (in Chinese) [王金东, 秦晓娟, 魏正军, 刘小宝, 廖常俊, 刘颂豪 2010 59 281]

    [8]

    Zhang Y, Wang S, Yin Z Q, Chen W, Liang W Y, Li H W, Guo G C, Han Z F 2012 Chin. Phys. B 21 100307

    [9]

    Zhou R R Yang L 2012 Chin. Phys. B 21 080301

    [10]

    Qin X J, Zhong P P, Zhang H N, Wang J D, Wei Z J, Chen S, Liu S H 2011 Chin. Phys. B 20 050307

    [11]

    Brassard G Lutkenhaus N, Mor T, Sanders B C 2000 Phys. Rev. Lett. 85 1330

    [12]

    Sun S H, Liang L M 2012 Appl. Phys. Lett 101 071107

    [13]

    Makarov V, Skaar J 2008 Quantum Infor. Comput. 86 0622

    [14]

    Zhao Y, Fung C H F, Qi B, Chen C, Lo H K 2008 Phys. Rev. A 78 042333

    [15]

    Makarov V 2009 New Journal of Modern Optics. 11 065003

    [16]

    Acín A, Brunner N, Gisin N, Massar S, Pironio S, Scarani V 2007 Phys. Rev. Lett 98 230501

    [17]

    Pironio S, Acín A, Brunner N, Gisin N, Massar S, Scarani V 2009 New J. Phys. 11 045021

    [18]

    Lo H K, Curty M Qi B 2012 Phys. Rev. Lett 108 130503

    [19]

    Hwang W Y 2003 Phys. Rev. Lett. 91 057901

    [20]

    Ma X F, Fung C H F, Razavi M 2012 Phys. Rev. A 86 052305

    [21]

    Wang X B 2013 Phys. Rev. A 87 012320

    [22]

    Sun S H Gao M, Li C Y, Liang L M 2013 Phys. Rev. A 87 052329

    [23]

    Liu Y, Chen T Y, Wang L J, Lao H, Shentu G L, Wian J, Cui K, Yin H L, Liu N L, Li L, Ma X F, Pele J S, Fejer M M, Zhang Q, Pan J W 2013 Phys. Rev. Lett 111 130502

    [24]

    Tang Z, Liao Z, Xu F, Qi B, Qian L, Lo H K 2013 arXiv: 13066134

    [25]

    Rubenok A, Slater J A, Chan P, Martinez I L, Tittel W 2013 Phys. Rev. Lett. 111 130501

    [26]

    Sasaki M, Fujiwara M, Ishizuka H, Klaus W, Wakui K, Takeoka M, Tanaka A, Yoshino K, Nambu Y, Takahashi S, Tajima A, Tomita A, Domeki T, Hasegawa T, Sakai Y, Kobayashi H, Asai T, Shimizu K, Tokura T, Tsurumaru T, Matsui M, Honjo T, Tamaki K, Takesue H, Tokura Y, Dynes J F, Dixon A R, Sharpe A W, Yuan Z L, Shields A J, Uchikoga S, Legre M, Robyr S, Trinkler P, Monat L, Page J B, Ribordy G, Poppe A, Allacher A, Maurthart O, Langer T, Peev M, Zeilinger A 2011 Opt. Express 19 10387

    [27]

    Ma X F, Razavi M 2012 Phys. Rev. A 86 62319

  • [1]

    Bennet C H, Brassard G 1984 Proc IEEE International Conference Computers, Systems, and Signal Processing Bangalore, India, December 9–12, 1984, p175–179

    [2]

    Shor P W, Preskill J 2000 Phys. Rev. Lett. 85 441

    [3]

    Mayers D 2001 Journal of the ACM 48 351

    [4]

    Gottesman D, Lo H K, Lutkenhaus N, Preskill J 2004 Quantum Infor. Comput 4 325

    [5]

    Zhou Y Y, Zhou X T, Tian P G, Wang Y J 2013 Chin. Phys. B 22 010305

    [6]

    Sheng Y B, Zhou L, Cheng W W, Gong L Y, Wang L, Zhan S M 2013 Chin. Phys. B 22 030314

    [7]

    Wang J D, Qin X J, Wei Z J, Liu X B, Liao C J, Liu S H 2010 Acta Phys. Sin. 59 281 (in Chinese) [王金东, 秦晓娟, 魏正军, 刘小宝, 廖常俊, 刘颂豪 2010 59 281]

    [8]

    Zhang Y, Wang S, Yin Z Q, Chen W, Liang W Y, Li H W, Guo G C, Han Z F 2012 Chin. Phys. B 21 100307

    [9]

    Zhou R R Yang L 2012 Chin. Phys. B 21 080301

    [10]

    Qin X J, Zhong P P, Zhang H N, Wang J D, Wei Z J, Chen S, Liu S H 2011 Chin. Phys. B 20 050307

    [11]

    Brassard G Lutkenhaus N, Mor T, Sanders B C 2000 Phys. Rev. Lett. 85 1330

    [12]

    Sun S H, Liang L M 2012 Appl. Phys. Lett 101 071107

    [13]

    Makarov V, Skaar J 2008 Quantum Infor. Comput. 86 0622

    [14]

    Zhao Y, Fung C H F, Qi B, Chen C, Lo H K 2008 Phys. Rev. A 78 042333

    [15]

    Makarov V 2009 New Journal of Modern Optics. 11 065003

    [16]

    Acín A, Brunner N, Gisin N, Massar S, Pironio S, Scarani V 2007 Phys. Rev. Lett 98 230501

    [17]

    Pironio S, Acín A, Brunner N, Gisin N, Massar S, Scarani V 2009 New J. Phys. 11 045021

    [18]

    Lo H K, Curty M Qi B 2012 Phys. Rev. Lett 108 130503

    [19]

    Hwang W Y 2003 Phys. Rev. Lett. 91 057901

    [20]

    Ma X F, Fung C H F, Razavi M 2012 Phys. Rev. A 86 052305

    [21]

    Wang X B 2013 Phys. Rev. A 87 012320

    [22]

    Sun S H Gao M, Li C Y, Liang L M 2013 Phys. Rev. A 87 052329

    [23]

    Liu Y, Chen T Y, Wang L J, Lao H, Shentu G L, Wian J, Cui K, Yin H L, Liu N L, Li L, Ma X F, Pele J S, Fejer M M, Zhang Q, Pan J W 2013 Phys. Rev. Lett 111 130502

    [24]

    Tang Z, Liao Z, Xu F, Qi B, Qian L, Lo H K 2013 arXiv: 13066134

    [25]

    Rubenok A, Slater J A, Chan P, Martinez I L, Tittel W 2013 Phys. Rev. Lett. 111 130501

    [26]

    Sasaki M, Fujiwara M, Ishizuka H, Klaus W, Wakui K, Takeoka M, Tanaka A, Yoshino K, Nambu Y, Takahashi S, Tajima A, Tomita A, Domeki T, Hasegawa T, Sakai Y, Kobayashi H, Asai T, Shimizu K, Tokura T, Tsurumaru T, Matsui M, Honjo T, Tamaki K, Takesue H, Tokura Y, Dynes J F, Dixon A R, Sharpe A W, Yuan Z L, Shields A J, Uchikoga S, Legre M, Robyr S, Trinkler P, Monat L, Page J B, Ribordy G, Poppe A, Allacher A, Maurthart O, Langer T, Peev M, Zeilinger A 2011 Opt. Express 19 10387

    [27]

    Ma X F, Razavi M 2012 Phys. Rev. A 86 62319

  • [1] 刘天乐, 徐枭, 付博玮, 徐佳歆, 刘靖阳, 周星宇, 王琴. 更正: 基于回归决策树的测量设备无关型量子密钥分发参数优化.  , 2024, 73(19): 199901. doi: 10.7498/aps.73.199901
    [2] 马洛嘉, 丁华建, 陈子骐, 张春辉, 王琴. 一种态制备误差容忍的量子数字签名协议.  , 2024, 73(2): 020301. doi: 10.7498/aps.73.20231190
    [3] 刘天乐, 徐枭, 付博玮, 徐佳歆, 刘靖阳, 周星宇, 王琴. 基于回归决策树的测量设备无关型量子密钥分发参数优化.  , 2023, 72(11): 110304. doi: 10.7498/aps.72.20230160
    [4] 周江平, 周媛媛, 周学军. 非对称信道相位匹配量子密钥分发.  , 2023, 72(14): 140302. doi: 10.7498/aps.72.20230652
    [5] 詹绍康, 王金东, 董双, 黄偲颖, 侯倾城, 莫乃达, 弥赏, 向黎冰, 赵天明, 於亚飞, 魏正军, 张智明. 基于四态协议的半量子密钥分发诱骗态模型的有限码长分析.  , 2023, 72(22): 220303. doi: 10.7498/aps.72.20230849
    [6] 吴晓东, 黄端, 黄鹏, 郭迎. 基于实际探测器补偿的离散调制连续变量测量设备无关量子密钥分发方案.  , 2022, 71(24): 240304. doi: 10.7498/aps.71.20221072
    [7] 杜聪, 王金东, 秦晓娟, 魏正军, 於亚飞, 张智明. 基于混合编码的测量设备无关量子密钥分发的简单协议.  , 2020, 69(19): 190301. doi: 10.7498/aps.69.20200162
    [8] 谷文苑, 赵尚弘, 东晨, 朱卓丹, 屈亚运. 一种K分布强湍流下的测量设备无关量子密钥分发方案.  , 2019, 68(9): 090302. doi: 10.7498/aps.68.20182130
    [9] 谷文苑, 赵尚弘, 东晨, 王星宇, 杨鼎. 参考系波动下的参考系无关测量设备无关量子密钥分发协议.  , 2019, 68(24): 240301. doi: 10.7498/aps.68.20191364
    [10] 吴承峰, 杜亚男, 王金东, 魏正军, 秦晓娟, 赵峰, 张智明. 弱相干光源测量设备无关量子密钥分发系统的性能优化分析.  , 2016, 65(10): 100302. doi: 10.7498/aps.65.100302
    [11] 孙伟, 尹华磊, 孙祥祥, 陈腾云. 基于相干叠加态的非正交编码诱骗态量子密钥分发.  , 2016, 65(8): 080301. doi: 10.7498/aps.65.080301
    [12] 杜亚男, 解文钟, 金璇, 王金东, 魏正军, 秦晓娟, 赵峰, 张智明. 基于弱相干光源测量设备无关量子密钥分发系统的误码率分析.  , 2015, 64(11): 110301. doi: 10.7498/aps.64.110301
    [13] 孙颖, 赵尚弘, 东晨. 基于量子存储的长距离测量设备无关量子密钥分配研究.  , 2015, 64(14): 140304. doi: 10.7498/aps.64.140304
    [14] 东晨, 赵尚弘, 董毅, 赵卫虎, 赵静. 基于旋转不变态的测量设备无关量子密钥分配协议研究.  , 2014, 63(17): 170303. doi: 10.7498/aps.63.170303
    [15] 东晨, 赵尚弘, 张宁, 董毅, 赵卫虎, 刘韵. 奇相干光源的测量设备无关量子密钥分配研究.  , 2014, 63(20): 200304. doi: 10.7498/aps.63.200304
    [16] 周媛媛, 张合庆, 周学军, 田培根. 基于标记配对相干态光源的诱骗态量子密钥分配性能分析.  , 2013, 62(20): 200302. doi: 10.7498/aps.62.200302
    [17] 焦荣珍, 张弨, 马海强. 基于实用光源的诱惑态量子密钥分配研究.  , 2011, 60(11): 110303. doi: 10.7498/aps.60.110303
    [18] 周媛媛, 周学军. 基于弱相干态光源的非正交编码被动诱骗态量子密钥分配.  , 2011, 60(10): 100301. doi: 10.7498/aps.60.100301
    [19] 权东晓, 裴昌幸, 朱畅华, 刘 丹. 一种新的预报单光子源诱骗态量子密钥分发方案.  , 2008, 57(9): 5600-5604. doi: 10.7498/aps.57.5600
    [20] 张权, 张尔扬. 非对称二状态量子密钥分配协议最优参量研究.  , 2002, 51(8): 1684-1689. doi: 10.7498/aps.51.1684
计量
  • 文章访问数:  6195
  • PDF下载量:  648
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-10-02
  • 修回日期:  2013-11-03
  • 刊出日期:  2014-02-05

/

返回文章
返回
Baidu
map