搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一维任意子Stark模型的多体局域化

游慧敏 刘敬鹄 张云波 徐志浩

引用本文:
Citation:

一维任意子Stark模型的多体局域化

游慧敏, 刘敬鹄, 张云波, 徐志浩

Many-Body Localization in an Anyon Stark Model

You Hui-Min, Liu Jing-Hu, Zhang Yun-Bo, Xu Zhi-Hao
PDF
HTML
导出引用
  • 本文研究了具有Stark势的一维相互作用任意子模型. 通过数值计算能谱统计、半链纠缠熵和粒子非平衡态占据数等来观测有限尺寸下的多体局域化现象. 随着线性势强度的增强, 系统的能谱统计分布从高斯系综向泊松系综过渡, 过渡区域的平均能级差比率表现为强烈依赖于统计角的非单调行为. 平均半链纠缠熵服从体积律到面积律转变且转变点对统计角有非单调依赖关系, 遍历相的半链纠缠熵随时间线性增长, 而在局域相中随时间呈对数增长, 其演化行为也与统计角有关. 最后随着线性势增大, 长时极限下粒子非平衡态占据数由零变为有限值, 有限值的大小与任意子统计角的取值有关, 这种演化行为进一步验证了任意子模型中统计角的重要性. 该研究结果为任意子系统中多体局域化的研究提供了新的视角.
    In this paper, we study a one-dimensional interacting anyon model with a Stark potential in the finite size. Using the fractional Jordan Wigner transformation, the anyons in the one-dimensional system are mapped onto bosons, which are described by the following Hamiltonian:$ \begin{aligned} \hat{H}^{\text{boson}}=-J\sum_{j=1}^{L-1}\left( \hat{b}_{j}^{\dagger}\hat{b}_{j+1}e^{i\theta \hat{n}_{j}}+h.c.\right)+\frac{U}{2}\sum_{j=1}^{L}\hat{n}_{j}\left( \hat{n}_{j}-1\right)+\sum_{j=1}^{L}{h}_{j}\hat{n}_{j},\;\;\;\;\;\;\;\;(7)\end{aligned}$where θ is the statistical angle, and the on-site potential is $h_{j}=-\gamma\left(j-1\right) +\alpha\left( \dfrac{j-1}{L-1}\right)^{2}$ with γ representing the strength of the Stark linear potential and α being the strength of the nonlinear part.Using the exact diagonalization method, we numerically analyze the spectral statistics, half-chain entanglement entropy and particle imbalance to investigate the onset of many-body localization (MBL) in this interacting anyon system, induced by the increasing of the linear potential strength. As the Stark linear potential strength increases, the spectral statistics transition from a Gaussian ensemble to a Poisson ensemble. In the ergodic phase, except for $\theta=0$ and π, where the mean value of the gap-ratio parameter $\left\langle r\right\rangle\approx 0.53$, due to the broken time reversal symmetry, the Hamiltonian matrix becomes a complex hermit one and $\left\langle r\right\rangle\approx 0.6$. In the MBL phase, $\left\langle r\right\rangle\approx 0.39$, which is independent of θ. However, in the intermediate γ regime, the value of $\left\langle r\right\rangle$ strongly depends on the choice of θ. The average of the half-chain entanglement entropy transitions from a volume law to an area law, which allows us to construct a θ-dependent MBL phase diagram. The time evolution of the half-chain entanglement entropy $S(t)$ increases linearly with time in the ergodic phase. In the MBL phase, $S(t)$ grows logarithmically with time, reaching a stable value that depends on the anyon statistical angle. The localization of particles in a quench dynamics can provide evidence for the breakdown of ergodicity and is experimentally observable. We observe that with the increasing of γ, the even-odd particle imbalance changes from zero to non-zero values in the long-time limit. In the MBL phase, the long-time mean value of the imbalance is dependent on the anyon statistical angle θ. From the Hamiltonian $\hat{H}^{\text{boson}}$, it can be inferred that the statistical behavior of anyon system equally changes the hopping interactions in boson system, which is a many-body effect. By changing the statistical angle θ, the many-body interactions in the system are correspondingly altered. And the change of the many-body interaction strength affects the occurrence of the MBL transition, which is also the reason for MBL transition changes with the anyon statistical angle θ. Our results provide new insights into the study of MBL in anyon systems and whether such phenomena persist in the thermodynamic limit needs further discussion in the future.
  • 图 1  (a) 不同统计角θ下平均能级差比率$ \langle r\rangle $与Stark线性势强度γ的关系. (b) 平均能级差比率$ \langle r\rangle $在不同线性势强度γ下与统计角θ的关系. 这里选取$ L=12 $

    Fig. 1.  (color line) (a) The mean value of the gap-ratio parameter $ \langle r\rangle $ as a function of the Stark linear potential strength γ for different statistical angles θ. (b) $ \langle r\rangle $ as a function of the statistical angle θ for different γ. Here, $ L=12 $.

    图 2  (a) 线性势强度分别为$ \gamma=1 $和6时, 不同统计角的平均半链纠缠熵与系统尺寸L的关系图. (b)当$ L=12 $, $ \gamma=2 $时, 平均半链纠缠熵随统计角θ的变化趋势. (c) 任意子统计角分别为$ \theta=0.05\pi $和$ 0.9\pi $时, 不同尺寸的平均半链纠缠熵$ \langle S\rangle /L $随线性势强度γ的变化. (d) 多体局域化转变点$ \gamma_c $随着统计角θ变化的情况. I和II区域分别为多体局域相和遍历相

    Fig. 2.  (color line) (a) The average half-chain entanglement entropy $ \langle S\rangle $ as a function of the system size L for different θ with $ \gamma=1 $ and $ 6 $. (b) $ \langle S\rangle $ as a function of θ with $ \gamma=2 $ and $ L=12 $. (c) $ \langle S\rangle /L $ as a function of γ for $ \theta=0.05\pi $ and $ 0.9\pi $. (d) The many-body transition points $ \gamma_c $ as a function of θ, where region I and region II correspond to many-body localization and ergodic phases, respectively.

    图 3  (a) 不同θγ时半链纠缠熵$ S(t) $随时间t的演化行为. (b) 对于不同的γ, 半链纠缠熵平均值$ \overline{S} $随统计角θ的变化情况. (c) 不同θγ时, 粒子非平衡态占据数$ \mathcal{I}\left( t\right) $随时间演化的情况. (d) 对于不同的γ, 非平衡态占据数平均值$ \overline{\mathcal{I}} $随统计角θ的变化情况. 这里选取$ L=12 $

    Fig. 3.  (color line) (a) The evolution of the half-chain entanglement entropy $ S(t) $ for different θ and γ. (b) $ \overline{S} $ as a function of θ for different γ. (c) The evolution of the particle imbalance $ \mathcal{I}\left( t\right) $ for different θ and γ. (d) $ \overline{\mathcal{I}} $ as a function of θ for different γ. Here, $ L=12 $.

    Baidu
  • [1]

    Schreiber M, Hodgman S S, Bordia P, Lüschen H P, Fischer M H, Vosk R, Altman E, Schneider U, Bloch I 2015 Science 349 842Google Scholar

    [2]

    Bordia P, Lüschen H P, Hodgman S S, Schreiber M, Bloch I, Schneider U 2016 Phys. Rev. Lett. 116 140401Google Scholar

    [3]

    Smith J, Lee A, Richerme P, Neyenhuis B, Hess P W, Hauke P, Heyl M, Huse D A, Monroe C 2016 Nat. Phys. 12 907Google Scholar

    [4]

    Xu K, Chen J J, Zeng Y, Zhang Y R, Song C, Liu W, Guo Q, Zhang P, Xu D, Deng H, Huang K, Wang H, Zhu X, Zheng D, Fan H 2018 Phys. Rev. Lett. 120 050507Google Scholar

    [5]

    Guo Q, Cheng C, Sun Z H, Song Z, Li H, Wang Z, Ren W, Dong H, Zheng D, Zhang Y R, Mondaini R, Fan H, Wang H 2021 Nat. Phys. 17 234Google Scholar

    [6]

    Guo Q, Cheng C, Li H, Xu S, Zhang P, Wang Z, Song C, Liu W, Ren W, Dong H, Mondaini R, Wang H 2021 Phys. Rev. Lett. 127 240502Google Scholar

    [7]

    Morong W, Liu F, Becker P, Collins K S, Feng L, Kyprianidis A, Pagano G, You T, Gorshkov A V, Monroe C 2021 Nature 599 393Google Scholar

    [8]

    Scherg S, Kohlert T, Sala P, Pollmann F, Hebbe Madhusudhana B, Bloch I, Aidelsburger M 2021 Nat Commun 12 4490Google Scholar

    [9]

    Liu J H, Xu Z H 2023 Phys. Rev. B 108 184205Google Scholar

    [10]

    Leinaas J M and Myrheim J 1977 Nuovo Cimento Soc. Ital. Fis. B 37 1

    [11]

    Tsui D C, Stormer H L, Gossard A C 1982 Phys. Rev. Lett. 48 1559Google Scholar

    [12]

    Laughlin R B 1983 Phys. Rev. Lett. 50 1395Google Scholar

    [13]

    Nayak C, Simon S H, Stern A, Freedman M, Das Sarma S 2008 Rev. Mod. Phys. 80 1083Google Scholar

    [14]

    Kitaev A 2006 Ann. Phys. 321 2Google Scholar

    [15]

    Stern A 2008 Ann. Phys. 323 204Google Scholar

    [16]

    Haldane F D M 1991 Phys. Rev. Lett. 67 937Google Scholar

    [17]

    Vitoriano C, Coutinho-Filho M D 2009 Phys. Rev. Lett. 102 146404Google Scholar

    [18]

    Keilmann T, Lanzmich S, McCulloch I, Roncaglia M 2011 Nat Commun 2 361Google Scholar

    [19]

    Greschner S, Santos L 2015 Phys. Rev. Lett. 115 053002Google Scholar

    [20]

    Sträter C, Srivastava S C L, Eckardt A 2016 Phys. Rev. Lett. 117 205303Google Scholar

    [21]

    Zuo Z W, Li G L, Li L 2018 Phys. Rev. B 97 115126Google Scholar

    [22]

    Liu F, Garrison J R, Deng D L, Gong Z X, Gorshkov A V 2018 Phys. Rev. Lett. 121 250404Google Scholar

    [23]

    Zhang G Q, Zhang D W, Li Z, Wang Z D, Zhu S L 2020 Phys. Rev. B 102 054204Google Scholar

    [24]

    Wang Y Y, Sun Z H, Fan H 2021 Phys. Rev. B 104 205122Google Scholar

    [25]

    王利, 贾丽芳, 张云波 2022 71 130501Google Scholar

    Wang L, Jia L F, Zhang Y B 2022 Acta. Rhys. Sin. 71 130501Google Scholar

    [26]

    刘敬鹄, 徐志浩 2024 73 077202Google Scholar

    Liu J H, Xu Z H 2024 Acta. Rhys. Sin. 73 077202Google Scholar

    [27]

    Wu H, Vallières M, Feng D H, Sprung D W L 1990 Phys. Rev. A 42 1027Google Scholar

    [28]

    Hamazaki R, Kawabata K, Kura N, Ueda M 2020 Phys. Rev. Research 2 023286Google Scholar

    [29]

    Oganesyan V, Huse D A 2007 Phys. Rev. B 75 155111Google Scholar

    [30]

    Serbyn M, Papić Z, Abanin D A 2013 Phys. Rev. Lett. 111 127201Google Scholar

    [31]

    Van Nieuwenburg E, Baum Y, Refael G 2019 Proc. Natl. Acad. Sci. U.S.A. 116 9269Google Scholar

  • [1] 刘敬鹄, 徐志浩. 随机两体耗散诱导的非厄米多体局域化.  , doi: 10.7498/aps.73.20231987
    [2] 王利, 贾丽芳, 张云波. 一维晶格中全同任意子的量子动力学与关联.  , doi: 10.7498/aps.70.20220188
    [3] 王利, 贾丽芳, 张云波. 一维晶格中全同任意子的量子动力学与关联.  , doi: 10.7498/aps.71.20220188
    [4] 吴健, 白晓春, 肖勇, 耿明昕, 郁殿龙, 温激鸿. 一种多频局域共振型声子晶体板的低频带隙与减振特性.  , doi: 10.7498/aps.65.064602
    [5] 董慧杰, 王新宇, 李昌勇, 贾锁堂. 镓原子的Stark能级结构.  , doi: 10.7498/aps.64.093201
    [6] 刘建平, 侯顺永, 魏斌, 印建平. 亚声速NH3分子束静电Stark减速的理论研究.  , doi: 10.7498/aps.64.173701
    [7] 于智清, 王逊, 刘艳侠, 王梅, 杨合, 薛向欣. α-B晶体的Lennard-Jones对势和对势型多体势构建.  , doi: 10.7498/aps.64.103401
    [8] 程聪, 吴福根, 张欣, 姚源卫. 基于局域共振单元实现声子晶体低频多通道滤波.  , doi: 10.7498/aps.63.024301
    [9] 文岐华, 左曙光, 魏欢. 多振子梁弯曲振动中的局域共振带隙.  , doi: 10.7498/aps.61.034301
    [10] 卫高峰, 龙超云, 秦水介, 张 欣. 具有Manning-Rosen标量势与矢量势的Klein-Gordon方程的任意l波束缚态近似解析解.  , doi: 10.7498/aps.57.6730
    [11] 张贵银, 靳一东. NO2分子的光学-光学双色双共振多光子离化谱.  , doi: 10.7498/aps.57.132
    [12] 黄时中, 张鹏飞, 阮图南, 吴 宁, 郑志鹏. 自旋为任意整数的传播子.  , doi: 10.7498/aps.52.1882
    [13] 谢征微, 李伯臧. 处理具有任意形状势垒的磁性隧道结中电子输运的一个简单方法.  , doi: 10.7498/aps.51.399
    [14] 王藩侯, 杨传路, 李西军, 经福谦. 液氩多体作用势研究及其Hugoniot曲线的分子动力学模拟  .  , doi: 10.7498/aps.49.114
    [15] 王红艳, 高 涛, 易有根, 谭明亮, 朱正和, 傅依备, 汪小琳, 孙 颖. UO2分子的多体项展式势能函数.  , doi: 10.7498/aps.48.2215
    [16] 石云龙, 章豫梅, 陈 鸿, 吴 翔. 一维点阵局域势中玻色系统的相图.  , doi: 10.7498/aps.47.1870
    [17] 潘正瑛, 李融武. 用多体势模拟金原子簇与金薄膜的相互作用(Ⅰ)──金原子簇轰击引起的表面损伤.  , doi: 10.7498/aps.45.161
    [18] 王仁智, 黄美纯. Ga1-xAlxAs光学声子形变势研究.  , doi: 10.7498/aps.39.1778
    [19] 庞根弟, 蔡建华. 非均匀无序系统的声子局域化.  , doi: 10.7498/aps.37.688
    [20] 石康杰. 运动磁单极子的规范势.  , doi: 10.7498/aps.32.1426
计量
  • 文章访问数:  457
  • PDF下载量:  23
  • 被引次数: 0
出版历程
  • 上网日期:  2024-12-25

/

返回文章
返回
Baidu
map