搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于7Li冷原子操控的超高真空测量

成永军 董猛 孙雯君 吴翔民 张亚飞 贾文杰 冯村 张瑞芳

引用本文:
Citation:

基于7Li冷原子操控的超高真空测量

成永军, 董猛, 孙雯君, 吴翔民, 张亚飞, 贾文杰, 冯村, 张瑞芳

Ultra-high vacuum measurement based on 7Li cold atoms manipulation

Cheng Yong-Jun, Dong Meng, Sun Wen-Jun, Wu Xiang-Min, Zhang Ya-Fei, Jia Wen-Jie, Feng Cun, Zhang Rui-Fang
cstr: 32037.14.aps.73.20241215
PDF
HTML
导出引用
  • 国际单位制的重新定义促进真空计量体系向量子化转变, 真空参数的量子化是国际真空测量学领域目前最具引领性、前瞻性和颠覆性的研究方向之一, 量子真空测量是基于微观粒子体系的量子效应, 利用光学手段和量子力学理论实现真空参数的精密测量. 本文通过自主研制的冷原子真空测量装置操控7Li原子, 利用锂冷原子在磁光阱和磁阱中的逃逸损失特性开展了超高真空测量实验研究, 结果表明, 针对N2, Ar, He, H2四种真空常用气体分子, 在3×10–8—4×10–5 Pa真空范围, 7Li冷原子真空测量的不确定度最大为7.6%—6.0% (k = 2), 7Li冷原子的真空反演结果与传统电离真空计的测量结果具有良好的一致性, 其相对灵敏度因子的最大偏差小于8%, 验证了冷原子量子真空测量的准确性和可靠性, 研究成果对促进全新跨代真空测量技术发展, 满足空间科学探测、超精密测量与高端装备制造等需求具有重要意义.
    The redefinition of the International System of Units (SI) promotes the transformation of the vacuum measurement system toward quantization, and the quantization of vacuum parameters is one of the most leading, prospective and subversive research directions in the field of international vacuum metrology, and the quantum vacuum measurement is based on the quantum effect of the microscopic particle system, and the use of optical means and the theory of quantum mechanics to realize the precision measurement of the vacuum parameters. We develop a lithium-cooled atom vacuum measurement apparatus, which mainly consists of a 7Li atom trap system and a continuous expansion vacuum system. In this work, an experimental study of ultrahigh vacuum measurement is carried out by manipulating 7Li atoms and utilizing the loss characteristics of lithium cold atoms in magneto-optical and magnetic traps, and the results show that for the four commonly used gas molecules in vacuum, namely N2, Ar, He, and H2, in the vacuum range of (3×10–8–4×10–5) Pa, the maximum measurement uncertainty is 7.6%–6.0% (k = 2) based on 7Li cold atoms, and the cold atom vacuum measurement results are in good agreement with those of the traditional ionization vacuum gauges, and their relative sensitivities are in good agreement with those of the ionization vacuum gauges, and the maximal deviation of the relative sensitivity factor is less than 8%, which verifies the accuracy and reliability of the cold-atom quantum vacuum measurements. The research results are of great significance in promoting the development of new cross-generation vacuum measurement technology and meeting the needs of space science exploration, ultra-precision measurement and high-end equipment manufacturing.
      通信作者: 董猛, dongmeng1313@163.com
    • 基金项目: 国家自然科学基金(批准号: 62371214)资助的课题.
      Corresponding author: Dong Meng, dongmeng1313@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 62371214).
    [1]

    李得天, 成永军, 冯焱, 卢耀文, 赵澜, 徐婕 2009 真空科学与技术学报 29 522Google Scholar

    Li D T, Cheng Y J, Feng Y, Lu Y W, Zhao L, Xu J 2009 Chin. J. Vac. Sci. Technol. 29 522Google Scholar

    [2]

    Li D T, Wang Y J, Zhang H Z, Xi Z H, Li G 2021 Space Sci. Tech. 23 7592858

    [3]

    刘见, 王刚, 胡一鸣, 张腾, 罗子人, 王晴岚, 邵立晶 2016 科学通报 61 1502Google Scholar

    Liu J, Wang G, Hu Y M, Zhang T, Luo Z R, Wang Q L, Shao L J 2016 Chin. Sci. Bull 61 1502Google Scholar

    [4]

    王欲知, 陈旭 2007 真空技术 (北京: 北京航空航天大学出版社) 第6页

    Wang Y Z, Chen X 2007 Vacuum Technology (Beijing: Beihang University Press) p6

    [5]

    Jenninger B, Anderson J, Bernien M, Bundaleski M, Dimitrova H, Granovskij M, Illgen C, Setina J, Jousten K, Kucharski P, Reinhardt C, Scuderi F, Silva R A S, Stöltzel A, Teodoro O M N D, Trzpil-Jurgielewicz B, Wüest M 2021 Vacuum 183 109884Google Scholar

    [6]

    Fedchak J A, Abbott P J, Hendricks J H, Arnold P C, Peacock N T 2018 J. Vac. Sci. Technol. A 36 030802Google Scholar

    [7]

    Prentiss M, Cable A, Bjorkholm J E, Chu S, Raab E L, Pritchard D E 1988 Opt. Lett. 13 452Google Scholar

    [8]

    Scherschligt J, Fedchak J A, Barker D S, Eckel S, Klimov N, Makrides C, Tiesinga E 2017 Metrologia 54 125Google Scholar

    [9]

    Eckel S, Barker D S, Fedchak J A, Klimov N N, Norrgard E, Scherschligt J, Makrides C, Tiesinga E 2018 Metrologia 55 182Google Scholar

    [10]

    Makrides C, Barker D S, Fedchak J A, Eckel S, Tiesinga E 2019 Phys. Rev. A 99 042704Google Scholar

    [11]

    Makrides C, Barker D S, Fedchak J A, Scherschligt J, Eckel S, Tiesinga E 2020 Phys. Rev. A 101 012702Google Scholar

    [12]

    Makrides C, Barker D S, Fedchak J A, Scherschligt J, Eckel S, Tiesinga E 2022 Phys. Rev. A 105 029902Google Scholar

    [13]

    Makrides C, Barker D S, Fedchak J A, Scherschligt J, Eckel S, Tiesinga E 2022 Phys. Rev. A 105 039903Google Scholar

    [14]

    Barker D S, Klimov N N, Tiesinga E, Fedchak J A, Scherschligt J, Eckel S 2021 Measurement: Sensors 18 100229Google Scholar

    [15]

    Barker D S, Acharya B P, Fedchak J A, Klimov N N, Norrgard E B, Scherschligt J, Tiesinga E, Eckel S 2022 Rev. Sci. Instrum. 93 121101Google Scholar

    [16]

    Barker D S, Fedchak J A, Kłos J, Scherschligt J, Sheikh A A, Tiesinga E, Eckel S 2023 AVS Quantum Sci. 5 035001Google Scholar

    [17]

    Kłos J, Tiesinga E 2023 J. Chem. Phys. 158 014308Google Scholar

    [18]

    Booth J L, Shen P, Krems R V, Madison K W 2019 New J. Phys. 21 102001Google Scholar

    [19]

    Shen P, Madison K W, Booth J L 2020 Metrologia 57 025015Google Scholar

    [20]

    Shen P, Madison K W, Booth J L 2021 Metrologia 58 022101Google Scholar

    [21]

    Makhalov V B, Martiyanov K A, Turlapov A V 2016 Metrologia 53 1287Google Scholar

    [22]

    Jousten K 2016 Handbook of Vacuum Technology (Weinheim: Wiley-VCH) p634

    [23]

    Dongen J V, Zhu C, Clement D, Dufour G, Booth J, Madison K 2011 Phys. Rev. A 84 022708Google Scholar

    [24]

    Kawanaka J, Shimizu K, Takuma H 1993 Appl. Phys. B 57 113Google Scholar

    [25]

    张苏钊, 孙雯君, 董猛, 武海斌, 李睿, 张雪姣, 张静怡, 成永军 2022 71 094204Google Scholar

    Zhang S Z, Sun W J, Dong M, Wu H B, Li R, Zhang X J, Zhang J Y, Cheng Y J 2022 Acta Phys. Sin. 71 094204Google Scholar

    [26]

    Wu X M, Cheng Y J, Dong M, Sun W J, Zhang S Z, Ma Z Y, Li Y P, Jia W J, Feng T Y, Wu C Y 2023 Vacuum 207 111561Google Scholar

    [27]

    Sun W J, Wu X M, Cheng Y J, Ma Z Y, Jia W J, Zhang Y F, Zhang R F, Wu C Y, Feng C, Luo H G 2024 Vacuum 222 113079Google Scholar

    [28]

    Hajime Yoshida, Kenta Arai 2018 J. Vac. Sci. Technol. A 36 031604Google Scholar

    [29]

    Alper Elkatmis, Rifat Kangi 2019 Measurement 131 269Google Scholar

    [30]

    Yoshida H, Arai K, Kobata T 2014 Vacuum 101 433Google Scholar

    [31]

    Bich W 2014 Metrologia 51 S155Google Scholar

  • 图 1  7Li冷原子真空测量装置实物图

    Fig. 1.  Photo of 7Li cooled atomic vacuum measurement device.

    图 2  碰撞体系的损失率系数kloss与阱深U的关系曲线

    Fig. 2.  Loss rate coefficient kloss versus trap depth U for the collision system.

    图 3  7Li冷原子真空测量装置原理图

    Fig. 3.  Schematic diagram of the 7Li cold atom measurement apparatus.

    图 4  3D MOT真空腔体中7Li冷原子团拍摄照片

    Fig. 4.  Photo of 7Li cold atom clusters in 3D MOT vacuum cavity.

    图 5  7Li原子2S基态和2P激发态能级图

    Fig. 5.  Energy level diagrams of 2S ground state and 2P excited state of 7Li atom.

    图 6  磁光阱和磁阱中冷原子损失率测量控制时序

    Fig. 6.  Timing sequence of the cold atom loss rate measurements in MOT and MT.

    图 7  磁光阱和磁阱中冷原子损失率测量曲线

    Fig. 7.  Measurement curves of the loss rate of cold atoms in MOT and MT.

    图 8  损失率Γloss与冷原子测量真空度p的关系曲线

    Fig. 8.  Curve of loss rate Γloss versus cold atom measurement vacuum pressure p.

    图 9  分离规灵敏度因子与冷原子测量真空度的关系曲线

    Fig. 9.  Curve of the sensitivity factor of the extractor gauge versus the vacuum pressure of the cold atom measurement.

    表 1  ab initio第一性原理实验测量的损失率系数kloss和半经典理论计算值比对

    Table 1.  Comparison of the loss rate coefficient kloss measured by the ab initio first principle experiment and the calculated value of the semiclassical theory.

    碰撞体系 第一性原理测量值
    kloss/(10–15·m3·s–1)
    半经典理论计算值
    kloss/(10–15·m3·s–1)
    7Li-N2 1.36 0.27
    7Li-Ar 1.21 0.059
    7Li-He 1.04 1.29
    7Li-H2 1.56 2.12
    下载: 导出CSV

    表 2  冷原子校准的分离规相对N2的灵敏度因子

    Table 2.  Sensitivity factors of extractor gauge relative to N2 by cold atom calibration.

    气体冷原子校准结果文献[28]文献[29]文献[30]
    N21111
    Ar1.511.411.5291.42
    He0.170.1630.180.179
    H20.370.389
    下载: 导出CSV

    表 3  冷原子真空测量不确定度汇总表

    Table 3.  Summary of cold atom vacuum measurement uncertainties.

    不确定度来源评定方法不确定度分量
    损失率不确定度$ {u_{\text{r}}}({\varGamma _{{\text{loss}}}}) $A类10–8 Pa0.03%@N2; 0.02%@Ar
    10–7 Pa0.07%@N2;0.05%@Ar;0.05%@He;0.04%@H2
    10–6 Pa0.04%@N2; 0.1%@Ar; 0.02%@He;0.04%@H2
    10–5 Pa0.06%@N2;0.04%@Ar;0.07%@He;0.08%@H2
    B类0.6%
    损失率不确定度$ {u_{\text{r}}}({\varGamma _{{\text{MT}}}}) $A类1.6%@N2; 1.7%@Ar; 1.5%@He; 1.5%@H2
    B类0.6%
    损失率不确定度$ {u_{\text{r}}}({\varGamma _{{\text{MOT}}}}) $A类0.05%@N2; 0.07%@Ar; 0.09%@He; 0.06%@H2
    B类0.6%
    损失率系数不确定度$ {u_{\text{r}}}({k_{{\text{tot}}}}) $0.8%@N2; 0.3%@Ar; 2.4%@He; 1.9%@H2
    玻尔兹曼常数不确定度$ {u_{\text{r}}}({k_{\text{B}}}) $忽略不计
    气体分子温度不确定度$ {u_{\text{r}}}(T) $B类0.3%
    本底真空波动不确定度$ {u_{\text{r}}}(w) $A类10–8 Pa2.5%@N2; 2.5%@Ar; 2.0%@He; 2.7%@H2
    10–7 Pa0.5%@N2; 0.7%@Ar; 0.6%@He; 0.8%@H2
    10–6 Pa0.07%@N2;0.07%@Ar;0.08%@He;0.1%@H2
    10–5 Pa忽略不计
    合成标准不确定度10–8 Pa3.3%@N2; 3.2%@Ar; 3.6%@He;3.8%@H2
    10–7 Pa2.2%@N2; 2.2%@Ar; 3.1%@He;2.8%@H2
    10–6 Pa2.1%@N2; 2.0%@Ar; 3.0%@He;2.7%@H2
    10–5 Pa2.1%@N2; 2.0%@Ar;3.0%@He; 2.7%@H2
    下载: 导出CSV
    Baidu
  • [1]

    李得天, 成永军, 冯焱, 卢耀文, 赵澜, 徐婕 2009 真空科学与技术学报 29 522Google Scholar

    Li D T, Cheng Y J, Feng Y, Lu Y W, Zhao L, Xu J 2009 Chin. J. Vac. Sci. Technol. 29 522Google Scholar

    [2]

    Li D T, Wang Y J, Zhang H Z, Xi Z H, Li G 2021 Space Sci. Tech. 23 7592858

    [3]

    刘见, 王刚, 胡一鸣, 张腾, 罗子人, 王晴岚, 邵立晶 2016 科学通报 61 1502Google Scholar

    Liu J, Wang G, Hu Y M, Zhang T, Luo Z R, Wang Q L, Shao L J 2016 Chin. Sci. Bull 61 1502Google Scholar

    [4]

    王欲知, 陈旭 2007 真空技术 (北京: 北京航空航天大学出版社) 第6页

    Wang Y Z, Chen X 2007 Vacuum Technology (Beijing: Beihang University Press) p6

    [5]

    Jenninger B, Anderson J, Bernien M, Bundaleski M, Dimitrova H, Granovskij M, Illgen C, Setina J, Jousten K, Kucharski P, Reinhardt C, Scuderi F, Silva R A S, Stöltzel A, Teodoro O M N D, Trzpil-Jurgielewicz B, Wüest M 2021 Vacuum 183 109884Google Scholar

    [6]

    Fedchak J A, Abbott P J, Hendricks J H, Arnold P C, Peacock N T 2018 J. Vac. Sci. Technol. A 36 030802Google Scholar

    [7]

    Prentiss M, Cable A, Bjorkholm J E, Chu S, Raab E L, Pritchard D E 1988 Opt. Lett. 13 452Google Scholar

    [8]

    Scherschligt J, Fedchak J A, Barker D S, Eckel S, Klimov N, Makrides C, Tiesinga E 2017 Metrologia 54 125Google Scholar

    [9]

    Eckel S, Barker D S, Fedchak J A, Klimov N N, Norrgard E, Scherschligt J, Makrides C, Tiesinga E 2018 Metrologia 55 182Google Scholar

    [10]

    Makrides C, Barker D S, Fedchak J A, Eckel S, Tiesinga E 2019 Phys. Rev. A 99 042704Google Scholar

    [11]

    Makrides C, Barker D S, Fedchak J A, Scherschligt J, Eckel S, Tiesinga E 2020 Phys. Rev. A 101 012702Google Scholar

    [12]

    Makrides C, Barker D S, Fedchak J A, Scherschligt J, Eckel S, Tiesinga E 2022 Phys. Rev. A 105 029902Google Scholar

    [13]

    Makrides C, Barker D S, Fedchak J A, Scherschligt J, Eckel S, Tiesinga E 2022 Phys. Rev. A 105 039903Google Scholar

    [14]

    Barker D S, Klimov N N, Tiesinga E, Fedchak J A, Scherschligt J, Eckel S 2021 Measurement: Sensors 18 100229Google Scholar

    [15]

    Barker D S, Acharya B P, Fedchak J A, Klimov N N, Norrgard E B, Scherschligt J, Tiesinga E, Eckel S 2022 Rev. Sci. Instrum. 93 121101Google Scholar

    [16]

    Barker D S, Fedchak J A, Kłos J, Scherschligt J, Sheikh A A, Tiesinga E, Eckel S 2023 AVS Quantum Sci. 5 035001Google Scholar

    [17]

    Kłos J, Tiesinga E 2023 J. Chem. Phys. 158 014308Google Scholar

    [18]

    Booth J L, Shen P, Krems R V, Madison K W 2019 New J. Phys. 21 102001Google Scholar

    [19]

    Shen P, Madison K W, Booth J L 2020 Metrologia 57 025015Google Scholar

    [20]

    Shen P, Madison K W, Booth J L 2021 Metrologia 58 022101Google Scholar

    [21]

    Makhalov V B, Martiyanov K A, Turlapov A V 2016 Metrologia 53 1287Google Scholar

    [22]

    Jousten K 2016 Handbook of Vacuum Technology (Weinheim: Wiley-VCH) p634

    [23]

    Dongen J V, Zhu C, Clement D, Dufour G, Booth J, Madison K 2011 Phys. Rev. A 84 022708Google Scholar

    [24]

    Kawanaka J, Shimizu K, Takuma H 1993 Appl. Phys. B 57 113Google Scholar

    [25]

    张苏钊, 孙雯君, 董猛, 武海斌, 李睿, 张雪姣, 张静怡, 成永军 2022 71 094204Google Scholar

    Zhang S Z, Sun W J, Dong M, Wu H B, Li R, Zhang X J, Zhang J Y, Cheng Y J 2022 Acta Phys. Sin. 71 094204Google Scholar

    [26]

    Wu X M, Cheng Y J, Dong M, Sun W J, Zhang S Z, Ma Z Y, Li Y P, Jia W J, Feng T Y, Wu C Y 2023 Vacuum 207 111561Google Scholar

    [27]

    Sun W J, Wu X M, Cheng Y J, Ma Z Y, Jia W J, Zhang Y F, Zhang R F, Wu C Y, Feng C, Luo H G 2024 Vacuum 222 113079Google Scholar

    [28]

    Hajime Yoshida, Kenta Arai 2018 J. Vac. Sci. Technol. A 36 031604Google Scholar

    [29]

    Alper Elkatmis, Rifat Kangi 2019 Measurement 131 269Google Scholar

    [30]

    Yoshida H, Arai K, Kobata T 2014 Vacuum 101 433Google Scholar

    [31]

    Bich W 2014 Metrologia 51 S155Google Scholar

  • [1] 刘岩鑫, 王志辉, 管世军, 王勤霞, 张鹏飞, 李刚, 张天才. 光学阱中Λ增强型灰色黏团冷却辅助原子装载.  , 2024, 73(11): 113701. doi: 10.7498/aps.73.20240182
    [2] 张苏钊, 孙雯君, 董猛, 武海斌, 李睿, 张雪姣, 张静怡, 成永军. 基于磁光阱中6Li冷原子的真空度测量.  , 2022, 71(9): 094204. doi: 10.7498/aps.71.20212204
    [3] 程冰, 周寅, 陈佩军, 张凯军, 朱栋, 王凯楠, 翁堪兴, 王河林, 彭树萍, 王肖隆, 吴彬, 林强. 船载系泊状态下基于原子重力仪的绝对重力测量.  , 2021, 70(4): 040304. doi: 10.7498/aps.70.20201522
    [4] 吴彬, 周寅, 程冰, 朱栋, 王凯楠, 朱欣欣, 陈佩军, 翁堪兴, 杨秋海, 林佳宏, 张凯军, 王河林, 林强. 基于原子重力仪的车载静态绝对重力测量.  , 2020, 69(6): 060302. doi: 10.7498/aps.69.20191765
    [5] 何天琛, 李吉. 利用Kapitza-Dirac脉冲操控简谐势阱中冷原子测量重力加速度.  , 2019, 68(20): 203701. doi: 10.7498/aps.68.20190749
    [6] 吴彬, 程冰, 付志杰, 朱栋, 周寅, 翁堪兴, 王肖隆, 林强. 大倾斜角度下基于冷原子重力仪的绝对重力测量.  , 2018, 67(19): 190302. doi: 10.7498/aps.67.20181121
    [7] 袁园, 芦小刚, 白金海, 李建军, 吴令安, 傅盘铭, 王如泉, 左战春. 多模1064nm光纤激光器实现一维远失谐光晶格.  , 2016, 65(4): 043701. doi: 10.7498/aps.65.043701
    [8] 徐润东, 刘文良, 武寄洲, 马杰, 肖连团, 贾锁堂. 磁光阱中超冷钠-铯原子碰撞的实验研究.  , 2016, 65(9): 093201. doi: 10.7498/aps.65.093201
    [9] 苟维, 刘亢亢, 付小虎, 赵儒臣, 孙剑芳, 徐震. 中性汞原子磁光阱装载率的优化.  , 2016, 65(13): 130201. doi: 10.7498/aps.65.130201
    [10] 杨威, 孙大立, 周林, 王谨, 詹明生. 用于原子干涉仪实验的锂原子的塞曼减速与磁光囚禁.  , 2014, 63(15): 153701. doi: 10.7498/aps.63.153701
    [11] 王杰英, 刘贝, 刁文婷, 靳刚, 何军, 王军民. 磁光阱中单原子荧光信号的优化及单原子的高效装载.  , 2014, 63(5): 053202. doi: 10.7498/aps.63.053202
    [12] 元晋鹏, 姬中华, 杨艳, 张洪山, 赵延霆, 马杰, 汪丽蓉, 肖连团, 贾锁堂. 飞行时间质谱探测磁光阱中超冷分子离子的实验研究.  , 2012, 61(18): 183301. doi: 10.7498/aps.61.183301
    [13] 张鹏飞, 李刚, 张玉驰, 杨榕灿, 郭龑强, 王军民, 张天才. 光致原子解吸附对冷原子磁光阱装载的动力学研究.  , 2010, 59(9): 6423-6429. doi: 10.7498/aps.59.6423
    [14] 邱 英, 何 军, 王彦华, 王 婧, 张天才, 王军民. 三维光学晶格中铯原子的装载与冷却.  , 2008, 57(10): 6227-6232. doi: 10.7498/aps.57.6227
    [15] 汪丽蓉, 马 杰, 张临杰, 肖连团, 贾锁堂. 基于振幅调制的超冷铯原子高分辨光缔合光谱的实验研究.  , 2007, 56(11): 6373-6377. doi: 10.7498/aps.56.6373
    [16] 张鹏飞, 许忻平, 张海潮, 周善钰, 王育竹. 紫外光诱导原子脱附技术在单腔磁阱装载中的应用.  , 2007, 56(6): 3205-3211. doi: 10.7498/aps.56.3205
    [17] 王彦华, 杨海菁, 张天才, 王军民. 用吸收法对铯原子磁光阱中冷原子数目的测量.  , 2006, 55(7): 3403-3407. doi: 10.7498/aps.55.3403
    [18] 江开军, 李 可, 王 谨, 詹明生. Rb原子磁光阱中囚禁原子数目与实验参数的依赖关系.  , 2006, 55(1): 125-129. doi: 10.7498/aps.55.125
    [19] 耿 涛, 闫树斌, 王彦华, 杨海菁, 张天才, 王军民. 用短程飞行时间吸收谱对铯磁光阱中冷原子温度的测量.  , 2005, 54(11): 5104-5108. doi: 10.7498/aps.54.5104
    [20] 徐志君, 程 成, 杨欢耸, 武 强, 熊宏伟. 三维光晶格中玻色凝聚气体基态波函数及干涉演化.  , 2004, 53(9): 2835-2842. doi: 10.7498/aps.53.2835
计量
  • 文章访问数:  368
  • PDF下载量:  27
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-08-29
  • 修回日期:  2024-09-30
  • 上网日期:  2024-10-23
  • 刊出日期:  2024-11-20

/

返回文章
返回
Baidu
map