搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

氩气等离子体射流特性: 电压、气流、外磁场的综合影响

周雄峰 陈彬 刘坤

引用本文:
Citation:

氩气等离子体射流特性: 电压、气流、外磁场的综合影响

周雄峰, 陈彬, 刘坤

Characteristics of argon discharge plasma jet: comprehensive effects of discharge voltage, gas flow rate, and external magnetic field

Zhou Xiong-Feng, Chen Bin, Liu Kun
cstr: 32037.14.aps.73.20241166
PDF
HTML
导出引用
  • 大气压等离子体射流具有广阔的应用前景, 而电压、气体流速、外磁场均会影响其性能, 其综合影响更会使得放电规律复杂化. 但是目前缺乏三者组合对射流特性的综合影响研究, 无法更全面评估多放电条件下的放电特性规律. 因此, 本文以交流氩气等离子体射流为对象, 研究了电压、外磁场、气体流速三者组合作用对放电的宏观形貌、功率、气体温度、电子激发温度、电子密度、$\rm Ar^* $光谱强度、·OH粒子数密度等参量的影响. 结果表明, 电压对射流参量的影响规律不受气体流速和外磁场的影响, 增大电压能提升放电性能; 加入外磁场可以在不引起放电功率显著变化的情况下提升放电性能, 尤其是当磁场仅作用于等离子羽时, 提升效果最显著; 气体流速对射流性能的改变会受到电压和外磁场的影响, 并不是在单个放电条件最优的组合情况下取得最佳的射流性能. 本研究有助于更全面了解不同放电条件下射流特性, 为优化射流性能提供指导, 有利于推动大气压等离子体射流技术的发展.
    Atmospheric pressure plasma jet has received widespread attention due to its enormous potential applications in various fields, and its discharge conditions play a key role in changing their physical and chemical properties and ultimately determining its application effectiveness. Factors such as discharge voltage, gas flow rate, and the introduction of an external magnetic field intricately influence the performance of plasma jet. The combined effects of any two of these factors can yield enhanced outcomes, while also bringing complexity to the discharge phenomenon. However, there is currently a lack of research on the combined effects of external magnetic field, discharge voltage, and gas flow rate on the characteristics of plasma jets, making it difficult to comprehensively evaluate the discharge characteristics of plasma jet under multiple discharge conditions. Therefore, this paper focuses on an AC excited atmospheric pressure argon plasma jet and investigates the combined effects of external magnetic field, discharge voltage, and gas flow rate on various characteristic parameters of the plasma jet, including macroscopic morphology, discharge power, gas temperature Tg, electron excitation temperature Texc, electron density ne, emission intensity of excited state Ar* particles, and number density of ground state ·OH particles by using methods of camera shooting, and electrical parameter measurement, spectroscopic analysis of emission and absorption spectra. The obtained results are shown below. The effect of discharge voltage on the characteristic parameters of the plasma jet is not affected by gas flow rate or the existence of an external magnetic field. The increase of discharge voltage can improve jet performance by enhancing the discharge power, extending the plasma plume length, elevating the gas temperature Tg and electron excitation temperature Texc, increasing the electron density ne and emission intensity of excited state Ar* particles, as well as the number density of ground state ·OH particles. The addition of an external magnetic field can improve the jet performance without significantly changing the discharge power, and the extent of this improvement is influenced by the mode of magnetic field action. Notably, the enhancement of jet performance is most significant when the magnetic field selectively targets the plasma plume, excluding direct interaction with electrode discharge region. The effect of gas flow rate on jet performance becomes intricate: it is intertwined with the effect of voltage and the effect of external magnetic field. When an external magnetic field is present, excessive voltage and gas flow rate may reduce the number density of ground state ·OH particles generated by plasma jet. This underscores the need for a detailed understanding when optimizing jet performance under various discharge conditions. Simply combining the optimal conditions for each individual factor does not guarantee the achievement of peak jet performance when all three discharge conditions work synergistically. This study presents valuable insights into the discharge characteristics of plasma jet under different discharge conditions, providing guidance for optimizing the performance of plasma jet and promoting the advancement of atmospheric pressure plasma jet technology in different application fields.
      通信作者: 刘坤, liukun@cqu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 52307160)和中央高校基本科研业务费(批准号: 2023CDJXY-029)资助的课题.
      Corresponding author: Liu Kun, liukun@cqu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 52307160) and the Fundamental Research Funds for the Central Universities (Grant No. 2023CDJXY-029).
    [1]

    Ma L, Chen Y, Gong Q, Cheng Z, Ran C F, Liu K, Shi C M 2023 Free Rad. Biol. Medic. 204 184Google Scholar

    [2]

    Wang X L, Liu J, Li Q X, Li L, Li S R, Ding Y H, Zhao T, Sun Y, Zhang Y T 2023 High Volt. 8 841Google Scholar

    [3]

    Xi D K, Zhang X H, Yang S Z, Yap S S, Ishikawa K, Hori M, Yap S L 2022 Chin. Phys. B 31 128201Google Scholar

    [4]

    Kong X H, Xue S, Li H Y, Yang W M, Martynovich E F, Ning W J, Wang R X 2022 Plasma Sources Sci. Technol. 31 095010Google Scholar

    [5]

    Cui X L, Xu Z B, Zhou Y Y, Zhu X, Wang S, Fang Z 2022 Surf. Coat. Technol. 451 129066Google Scholar

    [6]

    孔得霖, 杨冰彦, 何锋, 韩若愚, 缪劲松, 宋廷鲁, 欧阳吉庭 2021 70 095205Google Scholar

    Kong D L, Yang B Y, He F, Han R Y, Miao J S, Song T L, Ouyang J T 2021 Acta Phys. Sin. 70 095205Google Scholar

    [7]

    Wang R Y, Shen J Y, Ma Y P X, Qin X R, Qin X, Yang F, Ostrikov K, Zhang Q, He J, Zhong X X 2024 Plasma Process. Polym. 21 2300174Google Scholar

    [8]

    Liu K, Ren W, Ran C F, Zhou R S, Tang W B, Zhou R W, Yang Z H, Ostrikov K 2021 J. Phys. D: Appl. Phys. 54 065201Google Scholar

    [9]

    Liu Z J, Wang S T, Pang B L, Gao Y T, Li Q S, Xu D H, Liu D X, Zhou R W 2022 Plasma Sources Sci. Technol. 31 05LT03Google Scholar

    [10]

    Guo L, Xu R B, Guo L, Liu Z C, Zhao Y M, Liu D X, Zhang L, Chen H L, Kong M G 2018 Appl. Environ. Microbiol. 84 e00726-18Google Scholar

    [11]

    Ran C F, Zhou X F, Wang Z Y, Liu K 2024 Plasma Sources Sci. Technol. 33 015009Google Scholar

    [12]

    Liu K, Geng W Q, Zhou X F, Duan Q S, Zheng Z F, Ostrikov K 2023 Plasma Sources Sci. Technol. 32 025005Google Scholar

    [13]

    Liu K, Zuo J, Ran C F, Yang M H, Geng W Q, Liu S T, Ostrikov K 2022 Phys. Chem. Chem. Phys. 24 8940Google Scholar

    [14]

    Xu H M, Gao J G, Jia P Y, Ran J X, Chen J Y, Li J M 2024 Chin. Phys. B 33 015205Google Scholar

    [15]

    陈忠琪, 钟安, 戴栋, 宁文军 2022 71 165201Google Scholar

    Chen Z Q, Zhong A, Dai D, Ning W J 2022 Acta Phys. Sin. 71 165201Google Scholar

    [16]

    Huang B D, Zhang C, Zhu W C, Lu X P, Shao T 2021 High Volt. 6 665Google Scholar

    [17]

    Wang B H, Chen L, Liu G M, Song P, Cheng F C, Sun D L. Zeng W, Xu L 2023 Phys. Scr. 98 045612Google Scholar

    [18]

    Chen M, Dong X P, Wu K Y, Ran J X, Jia P Y, Wu J C, Li X C 2024 Appl. Phys. Lett. 124 214102Google Scholar

    [19]

    Wu K Y, Liu J N, Wu J C, Chen M, Ran J X, Pang X X, Jia P Y, Li X C, Ren C H 2023 High Volt. 8 1161Google Scholar

    [20]

    张雪雪, 贾鹏英, 冉俊霞, 李金懋, 孙换霞, 李雪辰 2024 73 085201Google Scholar

    Zheng X X, Jia P Y, Ran J X, Li J M, Sun H X, Li X C 2024 Acta Phys. Sin. 73 085201Google Scholar

    [21]

    田富超, 陈雷, 裴欢, 白洁琪, 曾文 2023 光谱学与光谱分析 43 3682Google Scholar

    Tian F C, Chen L, Pei H, Bai J Q, Zeng W 2023 Spectros. Spect. Anal. 43 3682Google Scholar

    [22]

    Jurov A, Skoro N, Spasic K, Modic M, Hojnik N, Vojosevic D, Durovic M, Petrovic Z L, Cvelbar U 2022 Eur. Phys. J. D 76 29Google Scholar

    [23]

    Bousba H E, Sahli S, Namous W S E, Benterrouche L 2022 IEEE Trans. Plasma Sci. 50 1218Google Scholar

    [24]

    Zhou X F, Yang M H, Xiang H F, Geng W Q, Liu K 2023 Phys. Chem. Chem. Phys. 25 27427Google Scholar

    [25]

    刘坤, 杨明昊, 周雄峰, 白杨, 冉从福 2023 高等学校化学学报 44 20230327Google Scholar

    Liu K, Yang M H, Zhou X F, Bai Y, Ran C F 2023 Chem. J. Chin. Universities 44 20230327Google Scholar

    [26]

    Jiang W M, Tang J, Wang Y S, Zhao W, Duan Y X 2014 Appl. Phys. Lett. 104 013505Google Scholar

    [27]

    Liu C T, Kumakura T, Ishikawa K, Hashizume H, Takeda K, Ito M, Hori M, Wu J S 2016 Plasma Sources Sci. Technol. 25 065005Google Scholar

    [28]

    Xu H, Guo S S, Zhang H, Liu D X, Xie K 2021 Phys. Plasmas 28 123521Google Scholar

    [29]

    Sah A K, Al-Amin M, Talukder M R 2023 Environ. Sci. Pollut. Res. 30 74877Google Scholar

    [30]

    Guo H F, Xu Y F, Wang Y Y, Ren C S 2020 Phys. Plasmas 27 023519Google Scholar

    [31]

    Wang M Y, Han R Y, Zhang C Y, Ouyang J T 2020 IEEE International Conference on High Voltage Engineering and Application Beijing, China, September 6–10, 2020 pp1–4

    [32]

    Liu K, Xia H T, Yang M H, Geng W Q, Zuo J, Ostrikov K 2022 Vacuum 198 110901Google Scholar

    [33]

    刘坤, 左杰, 周雄峰, 冉从福, 杨明昊, 耿文强 2023 72 055201Google Scholar

    Liu K, Zuo J, Zhou X F, Ran C F, Yang M H, Geng W Q 2023 Acta Phys. Sin. 72 055201Google Scholar

    [34]

    Yuan H, Wang W C, Yang D Z, Zhao Z L, Zhang L, Wang S 2017 Plasma Sci. Technol. 19 125401Google Scholar

    [35]

    刘坤, 项红甫, 周雄峰, 夏昊天, 李华 2023 72 115201Google Scholar

    Liu K, Xiang H F, Zhou X F, Xia H T, Li H 2023 Acta Phys. Sin. 72 115201Google Scholar

    [36]

    Chen X, Wang X Q, Zhang B X, Yuan M, Yang S Z 2023 Chin. Phys. B 32 115201Google Scholar

    [37]

    Yang D Z, Zhou X F, Liang J P, Xu Q N, Wang H L, Yang K, Wang B, Wang W C 2021 J. Phys. D: Appl. Phys. 54 244002Google Scholar

    [38]

    Ran C F, Zhou X F, Liu K 2024 Phys. Chem. Chem. Phys. 26 18408Google Scholar

    [39]

    Dang V S M M, Foucher E, Rousseau A 2015 J. Phys. D: Appl. Phys. 48 424003Google Scholar

    [40]

    Zhou X F, Xiang H F, Yang M H, Geng W Q, Liu K 2023 J. Phys. D: Appl. Phys. 56 455202Google Scholar

    [41]

    Chen J Y, Zhao N, Wu J C, Wu K Y, Zhang F R, Ran J X, Jia P Y, Pang X X, Li X C 2022 Chin. Phys. B 31 065205Google Scholar

    [42]

    Gudmundsson J T, Thorstinsson E G 2007 Plasma Sources Sci. Technol. 16 399Google Scholar

    [43]

    Sakiyama Y, Graves D B, Chang H W, Shimuzu T, Morfill G E 2012 J. Phys. D: Appl. Phys. 45 425201Google Scholar

    [44]

    Tian W, Tachibana K, Kushner M J 2014 J. Phys. D: Appl. Phys. 47 055202Google Scholar

    [45]

    Jiang N, Sun Y, Peng B F, Li J, Shang K F, Lu N, Wu Y 2022 Plasma Process. Polym. 19 e2100108Google Scholar

    [46]

    胡杨, 罗婧怡, 蔡雨烟, 卢新培 2023 72 130501Google Scholar

    Hu Y, Luo J Y, Cai Y Y, Lu X P 2023 Acta Phys. Sin. 72 130501Google Scholar

    [47]

    Singh K S, Sharma A K 2021 J. Appl. Phys. 130 043302Google Scholar

    [48]

    Jeroen J, van de Sande M, Sola A, Gamero A, Rodero A, van der Mullen J 2003 Plasma Sources Sci. Technol. 12 464Google Scholar

  • 图 1  (a) APPJ实验装置; (b) 磁场系统

    Fig. 1.  (a) Experimental setup of APPJ; (b) magnetic field system.

    图 2  (a)发射光谱图; (b)计算电子密度示意图; (c)计算电子激发温度示意图; (d)计算气体温度示意图

    Fig. 2.  (a) Diagram for optical emission spectrum; (b) diagram for electron density calculation; (c) diagram for electron excitation temperature calculation; (d) diagram for gas temperature calculation.

    图 3  (a) APPJ放电形貌; (b) 等离子体羽长度随放电条件的变化

    Fig. 3.  (a) APPJ discharge morphology; (b) variation of plume length with discharge conditions.

    图 4  放电功率随放电条件的变化

    Fig. 4.  Variation of power with discharge conditions.

    图 5  (a)气体温度和(b)电子激发温度随放电条件的变化

    Fig. 5.  Variation of (a) gas temperature and (b) electron excitation temperature with discharge conditions.

    图 6  电子密度随放电条件的变化

    Fig. 6.  Variation of electron number density with discharge conditions.

    图 7  (a)激发态Ar*光谱强度和(b)基态·OH粒子数密度随放电条件的变化

    Fig. 7.  Variation of (a) excited Ar* spectral intensity and (b) ·OH number density with discharge conditions.

    Baidu
  • [1]

    Ma L, Chen Y, Gong Q, Cheng Z, Ran C F, Liu K, Shi C M 2023 Free Rad. Biol. Medic. 204 184Google Scholar

    [2]

    Wang X L, Liu J, Li Q X, Li L, Li S R, Ding Y H, Zhao T, Sun Y, Zhang Y T 2023 High Volt. 8 841Google Scholar

    [3]

    Xi D K, Zhang X H, Yang S Z, Yap S S, Ishikawa K, Hori M, Yap S L 2022 Chin. Phys. B 31 128201Google Scholar

    [4]

    Kong X H, Xue S, Li H Y, Yang W M, Martynovich E F, Ning W J, Wang R X 2022 Plasma Sources Sci. Technol. 31 095010Google Scholar

    [5]

    Cui X L, Xu Z B, Zhou Y Y, Zhu X, Wang S, Fang Z 2022 Surf. Coat. Technol. 451 129066Google Scholar

    [6]

    孔得霖, 杨冰彦, 何锋, 韩若愚, 缪劲松, 宋廷鲁, 欧阳吉庭 2021 70 095205Google Scholar

    Kong D L, Yang B Y, He F, Han R Y, Miao J S, Song T L, Ouyang J T 2021 Acta Phys. Sin. 70 095205Google Scholar

    [7]

    Wang R Y, Shen J Y, Ma Y P X, Qin X R, Qin X, Yang F, Ostrikov K, Zhang Q, He J, Zhong X X 2024 Plasma Process. Polym. 21 2300174Google Scholar

    [8]

    Liu K, Ren W, Ran C F, Zhou R S, Tang W B, Zhou R W, Yang Z H, Ostrikov K 2021 J. Phys. D: Appl. Phys. 54 065201Google Scholar

    [9]

    Liu Z J, Wang S T, Pang B L, Gao Y T, Li Q S, Xu D H, Liu D X, Zhou R W 2022 Plasma Sources Sci. Technol. 31 05LT03Google Scholar

    [10]

    Guo L, Xu R B, Guo L, Liu Z C, Zhao Y M, Liu D X, Zhang L, Chen H L, Kong M G 2018 Appl. Environ. Microbiol. 84 e00726-18Google Scholar

    [11]

    Ran C F, Zhou X F, Wang Z Y, Liu K 2024 Plasma Sources Sci. Technol. 33 015009Google Scholar

    [12]

    Liu K, Geng W Q, Zhou X F, Duan Q S, Zheng Z F, Ostrikov K 2023 Plasma Sources Sci. Technol. 32 025005Google Scholar

    [13]

    Liu K, Zuo J, Ran C F, Yang M H, Geng W Q, Liu S T, Ostrikov K 2022 Phys. Chem. Chem. Phys. 24 8940Google Scholar

    [14]

    Xu H M, Gao J G, Jia P Y, Ran J X, Chen J Y, Li J M 2024 Chin. Phys. B 33 015205Google Scholar

    [15]

    陈忠琪, 钟安, 戴栋, 宁文军 2022 71 165201Google Scholar

    Chen Z Q, Zhong A, Dai D, Ning W J 2022 Acta Phys. Sin. 71 165201Google Scholar

    [16]

    Huang B D, Zhang C, Zhu W C, Lu X P, Shao T 2021 High Volt. 6 665Google Scholar

    [17]

    Wang B H, Chen L, Liu G M, Song P, Cheng F C, Sun D L. Zeng W, Xu L 2023 Phys. Scr. 98 045612Google Scholar

    [18]

    Chen M, Dong X P, Wu K Y, Ran J X, Jia P Y, Wu J C, Li X C 2024 Appl. Phys. Lett. 124 214102Google Scholar

    [19]

    Wu K Y, Liu J N, Wu J C, Chen M, Ran J X, Pang X X, Jia P Y, Li X C, Ren C H 2023 High Volt. 8 1161Google Scholar

    [20]

    张雪雪, 贾鹏英, 冉俊霞, 李金懋, 孙换霞, 李雪辰 2024 73 085201Google Scholar

    Zheng X X, Jia P Y, Ran J X, Li J M, Sun H X, Li X C 2024 Acta Phys. Sin. 73 085201Google Scholar

    [21]

    田富超, 陈雷, 裴欢, 白洁琪, 曾文 2023 光谱学与光谱分析 43 3682Google Scholar

    Tian F C, Chen L, Pei H, Bai J Q, Zeng W 2023 Spectros. Spect. Anal. 43 3682Google Scholar

    [22]

    Jurov A, Skoro N, Spasic K, Modic M, Hojnik N, Vojosevic D, Durovic M, Petrovic Z L, Cvelbar U 2022 Eur. Phys. J. D 76 29Google Scholar

    [23]

    Bousba H E, Sahli S, Namous W S E, Benterrouche L 2022 IEEE Trans. Plasma Sci. 50 1218Google Scholar

    [24]

    Zhou X F, Yang M H, Xiang H F, Geng W Q, Liu K 2023 Phys. Chem. Chem. Phys. 25 27427Google Scholar

    [25]

    刘坤, 杨明昊, 周雄峰, 白杨, 冉从福 2023 高等学校化学学报 44 20230327Google Scholar

    Liu K, Yang M H, Zhou X F, Bai Y, Ran C F 2023 Chem. J. Chin. Universities 44 20230327Google Scholar

    [26]

    Jiang W M, Tang J, Wang Y S, Zhao W, Duan Y X 2014 Appl. Phys. Lett. 104 013505Google Scholar

    [27]

    Liu C T, Kumakura T, Ishikawa K, Hashizume H, Takeda K, Ito M, Hori M, Wu J S 2016 Plasma Sources Sci. Technol. 25 065005Google Scholar

    [28]

    Xu H, Guo S S, Zhang H, Liu D X, Xie K 2021 Phys. Plasmas 28 123521Google Scholar

    [29]

    Sah A K, Al-Amin M, Talukder M R 2023 Environ. Sci. Pollut. Res. 30 74877Google Scholar

    [30]

    Guo H F, Xu Y F, Wang Y Y, Ren C S 2020 Phys. Plasmas 27 023519Google Scholar

    [31]

    Wang M Y, Han R Y, Zhang C Y, Ouyang J T 2020 IEEE International Conference on High Voltage Engineering and Application Beijing, China, September 6–10, 2020 pp1–4

    [32]

    Liu K, Xia H T, Yang M H, Geng W Q, Zuo J, Ostrikov K 2022 Vacuum 198 110901Google Scholar

    [33]

    刘坤, 左杰, 周雄峰, 冉从福, 杨明昊, 耿文强 2023 72 055201Google Scholar

    Liu K, Zuo J, Zhou X F, Ran C F, Yang M H, Geng W Q 2023 Acta Phys. Sin. 72 055201Google Scholar

    [34]

    Yuan H, Wang W C, Yang D Z, Zhao Z L, Zhang L, Wang S 2017 Plasma Sci. Technol. 19 125401Google Scholar

    [35]

    刘坤, 项红甫, 周雄峰, 夏昊天, 李华 2023 72 115201Google Scholar

    Liu K, Xiang H F, Zhou X F, Xia H T, Li H 2023 Acta Phys. Sin. 72 115201Google Scholar

    [36]

    Chen X, Wang X Q, Zhang B X, Yuan M, Yang S Z 2023 Chin. Phys. B 32 115201Google Scholar

    [37]

    Yang D Z, Zhou X F, Liang J P, Xu Q N, Wang H L, Yang K, Wang B, Wang W C 2021 J. Phys. D: Appl. Phys. 54 244002Google Scholar

    [38]

    Ran C F, Zhou X F, Liu K 2024 Phys. Chem. Chem. Phys. 26 18408Google Scholar

    [39]

    Dang V S M M, Foucher E, Rousseau A 2015 J. Phys. D: Appl. Phys. 48 424003Google Scholar

    [40]

    Zhou X F, Xiang H F, Yang M H, Geng W Q, Liu K 2023 J. Phys. D: Appl. Phys. 56 455202Google Scholar

    [41]

    Chen J Y, Zhao N, Wu J C, Wu K Y, Zhang F R, Ran J X, Jia P Y, Pang X X, Li X C 2022 Chin. Phys. B 31 065205Google Scholar

    [42]

    Gudmundsson J T, Thorstinsson E G 2007 Plasma Sources Sci. Technol. 16 399Google Scholar

    [43]

    Sakiyama Y, Graves D B, Chang H W, Shimuzu T, Morfill G E 2012 J. Phys. D: Appl. Phys. 45 425201Google Scholar

    [44]

    Tian W, Tachibana K, Kushner M J 2014 J. Phys. D: Appl. Phys. 47 055202Google Scholar

    [45]

    Jiang N, Sun Y, Peng B F, Li J, Shang K F, Lu N, Wu Y 2022 Plasma Process. Polym. 19 e2100108Google Scholar

    [46]

    胡杨, 罗婧怡, 蔡雨烟, 卢新培 2023 72 130501Google Scholar

    Hu Y, Luo J Y, Cai Y Y, Lu X P 2023 Acta Phys. Sin. 72 130501Google Scholar

    [47]

    Singh K S, Sharma A K 2021 J. Appl. Phys. 130 043302Google Scholar

    [48]

    Jeroen J, van de Sande M, Sola A, Gamero A, Rodero A, van der Mullen J 2003 Plasma Sources Sci. Technol. 12 464Google Scholar

  • [1] 李晨璞, 吴魏霞, 张礼刚, 胡金江, 谢革英, 郑志刚. 具有不同扩散系数的活性手征粒子分离.  , 2024, 73(20): 200201. doi: 10.7498/aps.73.20240686
    [2] 崔岁寒, 左伟, 黄健, 李熙腾, 陈秋皓, 郭宇翔, 杨超, 吴忠灿, 马正永, 傅劲裕, 田修波, 朱剑豪, 吴忠振. 面向复杂求解域的高效粒子网格/蒙特卡罗模型与阳极层离子源仿真.  , 2023, 72(8): 085202. doi: 10.7498/aps.72.20222394
    [3] 刘坤, 项红甫, 周雄峰, 夏昊天, 李华. 固定功率下大气压交流氩气等离子体射流的光谱特性.  , 2023, 72(11): 115201. doi: 10.7498/aps.72.20230307
    [4] 赵立芬, 哈静, 王非凡, 李庆, 何寿杰. 氧气空心阴极放电模拟.  , 2022, 71(2): 025201. doi: 10.7498/aps.71.20211150
    [5] 陈忠琪, 钟安, 戴栋, 宁文军. 屏蔽气体流速对同轴双管式氦气大气压等离子体射流粒子分布的影响.  , 2022, 71(16): 165201. doi: 10.7498/aps.71.20220421
    [6] 张亚容, 韩乾翰, 郭颖, 张菁, 石建军. 大气压脉冲放电等离子体射流特性及机理研究.  , 2021, 70(9): 095202. doi: 10.7498/aps.70.20202246
    [7] 孔得霖, 杨冰彦, 何锋, 韩若愚, 缪劲松, 宋廷鲁, 欧阳吉庭. 大气压电晕等离子体射流制备氧化钛薄膜.  , 2021, 70(9): 095205. doi: 10.7498/aps.70.20202181
    [8] 廖晶晶, 蔺福军. 混合手征活性粒子在时间延迟反馈下的扩散和分离.  , 2020, 69(22): 220501. doi: 10.7498/aps.69.20200505
    [9] 郭恒, 张晓宁, 聂秋月, 李和平, 曾实, 李志辉. 亚大气压六相交流电弧放电等离子体射流特性数值模拟.  , 2018, 67(5): 055201. doi: 10.7498/aps.67.20172557
    [10] 赵曰峰, 王超, 王伟宗, 李莉, 孙昊, 邵涛, 潘杰. 大气压甲烷针-板放电等离子体中粒子密度和反应路径的数值模拟.  , 2018, 67(8): 085202. doi: 10.7498/aps.67.20172192
    [11] 王鲁顺, 江慧, 孔祥木. 混合自旋XY系统热纠缠的研究.  , 2012, 61(24): 240304. doi: 10.7498/aps.61.240304
    [12] 蔡利兵, 王建国, 朱湘琴, 王玥, 宣春, 夏洪富. 外磁场对介质表面次级电子倍增效应的影响.  , 2012, 61(7): 075101. doi: 10.7498/aps.61.075101
    [13] 胡明, 万树德, 钟雷, 刘昊, 汪海. 磁控直流辉光等离子体放电特性.  , 2012, 61(4): 045201. doi: 10.7498/aps.61.045201
    [14] 刘莉莹, 张家良, 郭卿超, 王德真. 大气压等离子体辅助多晶硅薄膜化学气相沉积参数诊断.  , 2010, 59(4): 2653-2660. doi: 10.7498/aps.59.2653
    [15] 江南, 曹则贤. 一种大气压放电氦等离子体射流的实验研究.  , 2010, 59(5): 3324-3330. doi: 10.7498/aps.59.3324
    [16] 张 磊, 任 敏, 胡九宁, 邓 宁, 陈培毅. 用外磁场控制电流感应磁化翻转效应中的临界电流方法.  , 2008, 57(4): 2427-2431. doi: 10.7498/aps.57.2427
    [17] 郭玉献, 王 劼, 李红红, 徐彭寿, 王 锋, 闫文盛. 样品电流模式下外磁场引起的X射线吸收谱强度变化.  , 2007, 56(1): 561-568. doi: 10.7498/aps.56.561
    [18] 严建华, 屠 昕, 马增益, 潘新潮, 岑可法, Cheron Bruno. 大气压直流氩等离子体射流工作特性研究.  , 2006, 55(7): 3451-3457. doi: 10.7498/aps.55.3451
    [19] 孙春峰. 钻石分形晶格上Ising模型的配分函数与关联函数.  , 2005, 54(8): 3768-3773. doi: 10.7498/aps.54.3768
    [20] 杨 涓, 朱良明, 苏维仪, 毛根旺. 电磁波在磁化等离子体表面的功率反射系数计算研究.  , 2005, 54(7): 3236-3240. doi: 10.7498/aps.54.3236
计量
  • 文章访问数:  584
  • PDF下载量:  39
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-08-23
  • 修回日期:  2024-09-11
  • 上网日期:  2024-10-08
  • 刊出日期:  2024-11-20

/

返回文章
返回
Baidu
map