搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

电子注入层迁移率对Rubrene/C60基发光二极管半带隙开启电压的调控

彭腾 王辉耀 赵茜 刘俊宏 汪波 王晶晶 周银琼 张可怡 杨俊 熊祖洪

引用本文:
Citation:

电子注入层迁移率对Rubrene/C60基发光二极管半带隙开启电压的调控

彭腾, 王辉耀, 赵茜, 刘俊宏, 汪波, 王晶晶, 周银琼, 张可怡, 杨俊, 熊祖洪

Modulation of half-band-gap turn-on electroluminescence in Rubrene/C60 based OLEDs by electron injection layer mobility

Peng Teng, Wang Hui-Yao, Zhao Xi, Liu Jun-Hong, Wang Bo, Wang Jing-Jing, Zhou Yin-Qiong, Zhang Ke-Yi, Yang Jun, Xiong Zu-Hong
cstr: 32037.14.aps.73.20240864
PDF
HTML
导出引用
  • 半带隙开启特性是有机发光二极管独有的一种光电属性, 但电子注入层(electron injection layer, EIL)如何影响半带隙开启的研究还未见报道. 本文选取电子迁移率按数量级依次降低的EIL材料制备了三组控制器件, 发现随EIL电子迁移率的依次降低, 器件的开启电压分别呈现出半带隙(half-band-gap)开启、亚带隙(sub-band-gap)开启和正常开启的物理现象. 器件发光的特征磁效应(magneto-electroluminescence, MEL)结果显示: EIL电子迁移率高的器件实现半带隙开启主要归因于三重态-三重态湮灭(triplet-triplet annihilation, TTA, T1,Rb + T1,Rb → S1,Rb + S0)过程有效降低了器件的开启电压(1.1 V). 但在EIL电子迁移率较低的器件中, 为注入更多电子需要在低电子迁移率的EIL上施加更高的电压, 从而抵消了TTA过程降低的开启电压, 因此随着EIL电子迁移率依次降低其开启电压表现为亚带隙开启(2.1 V)和正常开启(4.1 V). 此外, 高EIL电子迁移率的器件中TTA更强, 亮度更高. 这是由于器件中形成了更多数量的三重激基复合物EX3态并通过Dexter能量传递过程形成T1,Rb. 本工作进一步加深了对Rubrene/C60型器件中电子迁移率对开启电压影响的理解以及相关物理微观机制的认识.
    Half-band-gap turn-on characteristic is a unique photoelectric property of organic light-emitting diodes (OLEDs), and has advantage in the development of low driving voltage devices. But the physical mechanism that the electron injection layer (EIL) affects the half-band-gap turn-on characteristic has not been reported. In this work, the change from half-band-gap turn-on electroluminescence (EL) to sub-band-gap turn-on EL to normal turn-on EL is observed by regulating the electron mobility of EIL in Rubrene/C60 based devices. Three sets of devices are fabricated by using BCP (~10–3 cm2/(V·s), Dev. 1), Bphen (~10–4 cm2/(V·s), Dev. 2) and TPBi (~10–5 cm2/(V·s), Dev. 3) as EIL materials. By measuring the I-B-V curves of devices at room temperature, it is found that the turn-on voltages of devices obviously increase by an order of magnitude with electron mobility of EIL decreasing. Specifically, the turn-on voltage of Dev. 1, Dev. 2, and Dev. 3 exhibit the physical phenomena of half-band-gap turn-on (1.1 V), sub-band-gap turn-on (2.1 V) and normal turn-on (4.1 V) properties, respectively. The magneto-electroluminescence (MEL) results show that the half-band-gap turn-on characteristic of high EIL electron mobility (Dev. 1) is attributed to the triplet-triplet annihilation (TTA, T1,Rb + T1,Rb → S1,Rb + S0) process which can effectively reduce the turn-on voltage. However, the half-band-gap turn-on characteristic is not observed in the devices (Dev. 2 and Dev. 3) with low carrier mobility, which can be reasonably explained by a higher voltage that is applied to the EIL with low electron mobility in order to inject more electrons. The higher voltage offsets the reduced turn-on voltage of the TTA process, resulting in Dev. 2 and Dev. 3 with sub-band-gap turn-on and normal turn-on, respectively. In addition, although the TTA process is observed in all three devices, the TTA process is stronger and the EL is higher in Dev. 1 with high EIL electron mobility. This is because a large number of triplet Rubrene/C60 exciplex states (EX3) are formed at the Rubrene/C60 interface, enhancing the Dexter energy transfer (DET, EX3 → T1,Rb) process from EX3 to triplet exciton of Rubrene (T1,Rb). That is, Dev. 1 exhibits stronger TTA process and higher EL due to the presence of a large number of T1,Rb excitons formed by DET process than Dev. 2 and Dev. 3. Furthermore, by measuring the I-V curves of devices at low temperature, it is found that the reduced carrier mobility caused by lowering operational temperature increases the turn-on voltages of these three devices. The significantly different increases in the turn-on voltages of Dev. 1–3 at the same low temperature are due to the different influences of temperature on the electron mobility of EIL. The tradeoff between the decrease of carrier mobility and the extension of exciton lifetime makes the MEL curves present different temperature-dependent behaviors. This work further deepens the understanding of the influence of EIL electron mobility on the turn-on voltage and the related physical microscopic mechanism in Rubrene/C60 devices.
      通信作者: 熊祖洪, zhxiong@swu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 12474074)资助的课题.
      Corresponding author: Xiong Zu-Hong, zhxiong@swu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 12474074).
    [1]

    D’Andrade B W, Esler J, Lin C, Adamovich V, Xia S, Weaver M S, Kwong R, Brown J J 2008 Proc SPIE 7051 70510QGoogle Scholar

    [2]

    Reineke S, Lindner F, Schwartz G, Seidler N, Walzer K, Lussem B, Leo K 2009 Nature 459 234Google Scholar

    [3]

    Helander M G, Wang Z B, Qiu J, Greiner M T, Puzzo D P, Liu Z W, Lu Z H 2011 Science 332 944Google Scholar

    [4]

    Komoda T, Yamae K, Kittichungchit V, Tsuji H, Ide N 2012 J. Photopolym. Sci. Technol. 25 321Google Scholar

    [5]

    Pandey A K, Nunzi J M 2007 Adv. Mater. 19 3613Google Scholar

    [6]

    Engmann S, Barito A J, Bittle E G, Giebink N C, Richter L J, Gundlach D J 2019 Nat. Commun. 10 227Google Scholar

    [7]

    Chen Q S, Jia W Y, Chen L X, Yuan D, Zou Y, Xiong Z H 2016 Sci. Rep. 6 25331Google Scholar

    [8]

    Tu L Y, Tang X T, Wang Y, Zhao X, Ma C H, Ye S N, Xiong Z H 2021 Phys. Rev. Appl. 16 064002Google Scholar

    [9]

    Xiang C Y, Peng C, Chen Y, So F 2015 Small 11 5439Google Scholar

    [10]

    He S J, Lu Z H 2016 J. Photonics Energy 6 036001Google Scholar

    [11]

    Tang X T, Hu Y Q, Jia W Y, Pan R H, Deng J Q, He Z H, Xiong Z H 2018 ACS Appl. Mater. Interfaces 10 1948Google Scholar

    [12]

    Yasuda T, Yamaguchi Y, Zou D C, Tsutsui T 2002 Jpn. J. Appl. Phys. 41 5626Google Scholar

    [13]

    Wang Y P, Li B, Jiang C, Fang Y, Bai P, Wang Y 2021 J. Phys. Chem. C 125 16753Google Scholar

    [14]

    Hung W Y, Ke T H, Lin Y T, Wu C C, Hung T H, Chao T C, Wong K T, Wu C I 2006 Appl. Phys. Lett. 88 064102Google Scholar

    [15]

    Niu L B, Zhang Y, Chen L J, Zhang Q M, Guan Y X 2020 Org. Electron. 87 105971Google Scholar

    [16]

    Jin P F, Zhou Z Y, Wang H, Hao J J, Chen R, Wang J Y, Zhang C 2022 J. Phys. Chem. Lett. 13 2516Google Scholar

    [17]

    吴雨廷, 朱洪强, 魏福贤, 王辉耀, 陈敬, 宁亚茹, 吴凤娇, 陈晓莉, 熊祖洪 2022 71 227201Google Scholar

    Wu Y T, Zhu H Q, Wei F X, Wang H Y, Chen J, Ning Y R, Wu F J, Chen X L, Xiong Z H 2022 Acta Phys. Sin. 71 227201Google Scholar

    [18]

    Bai J W, Chen P, Lei Y L, Zhang Y, Zhang Q M 2014 Org. Electron. 15 169Google Scholar

    [19]

    Piland G B, Burdett J J, Kurunthu D, Bardeen C J 2013 J. Phys. Chem. C 117 1224Google Scholar

    [20]

    Crooker S A, Liu F, Kelley M R, Martinez N J D, Nie W, Mohite A, Nayyar I H, Tretiak S, Smith D L, Ruden P P 2014 Appl. Phys. Lett. 105 153304Google Scholar

    [21]

    Geng R, Subedi R C, Luong H M, Pham M T, Huang W C, Li X G, Hong K L, Shao M, Xiao K, Hornak L A, Nguyen T D 2018 Phys. Rev. Lett. 120 086602Google Scholar

    [22]

    Hosokawa C, Tokailin H, Higashi H, Kusumoto T 1992 Appl. Phys. Lett. 60 1220Google Scholar

    [23]

    黄维, 密保秀, 高志强 2011 有机电子学 (北京: 科学出版社) 第300页

    Huang W, Mi B X, Gao Z Q 2011 Organic Electronic (Beijing: Science Press) p300

    [24]

    Park B, In I, Gopalan P, Evans P G, King S, Lyman P F 2008 Appl. Phys. Lett. 92 133302Google Scholar

    [25]

    Kobayashi S, Takenobu T, Mori S, Fujiwara A, Iwasa Y 2003 Sci. Technol. Adv. Mater. 4 371Google Scholar

    [26]

    Peng Q, Chen P, Li F 2013 Appl. Phys. Lett. 102 023301Google Scholar

    [27]

    Qiao X F, Yuan P S, Ma D G, Ahamad T, Alshehri S M 2017 Org. Electron. 46 1Google Scholar

    [28]

    Lei Y L, Zhang Y, Liu R, Chen P, Song Q L 2009 Org. Electron. 10 889Google Scholar

    [29]

    Liu Y, Wu X M, Zhao Z H, Gao J N, Zhan J, Rui H S, Lin X, Zhang N, Hua Y L, Yin S G 2017 Appl. Surf. Sci. 413 302Google Scholar

    [30]

    Tang X T, Pan R H, Zhao X, Jia W Y, Wang Y, Ma C H 2020 Adv. Funct. Mater. 5 765Google Scholar

    [31]

    王辉耀, 宁亚茹, 吴凤娇, 赵茜, 陈敬, 朱洪强, 魏福贤, 吴雨廷, 熊祖洪 2022 71 217201Google Scholar

    Wang H Y, Ning Y R, Wu F J, Zhao X, Chen J, Zhu H Q, Wei F X, Wu Y T, Xiong Z H 2022 Acta Phys. Sin. 71 217201Google Scholar

    [32]

    Wang Y, Ning Y R, Wu F G, Chen J, Chen X L, Xiong Z H 2022 Adv. Funct. Mater. 32 2202882Google Scholar

    [33]

    宁亚茹, 赵茜, 汤仙童, 陈敬, 吴凤娇, 贾伟尧, 陈晓莉, 熊祖洪 2022 71 087201Google Scholar

    Ning Y R, Zhao X, Tang X T, Chen J, Wu F J, Jia W R, Chen X L, Xiong Z H 2022 Acta Phys. Sin. 71 087201Google Scholar

    [34]

    Peng Q M, Li A W, Fan Y X, Chen P, Li F 2014 J. Mater. Chem. C 2 6264Google Scholar

    [35]

    陈秋松, 袁德, 贾伟尧, 陈历相, 邹越, 向杰, 陈颖冰, 张巧明, 熊祖洪 2015 64 177801Google Scholar

    Chen Q S, Yuan D, Jia W Y, Chen L X, Zou Y, Xiang J, Chen Y B, Zhang Q M, Xiong Z H 2015 Acta Phys. Sin. 64 177801Google Scholar

  • 图 1  (a) 器件1—3的能级结构示意图; (b) 器件1—3的归一化EL谱; (c), (d) 室温下器件1—3的亮度-电压特性曲线和电流-电压特性曲线

    Fig. 1.  (a) Energy level diagram of device 1–3; (b) normalized EL spectra of devices 1–3; (c), (d) the brightness-voltage and current-voltage curves of devices 1–3 at room temperature.

    图 2  Rubrene/C60型器件中激发态的微观演化过程, 其中插图分别展示了C60和Rubrene的化学分子结构

    Fig. 2.  Microscopic evolution processes of excited states occurring in the Rubrene/C60 device. The inset shows the chemical molecular structure of C60 and Rubrene.

    图 3  (a)—(c) 器件1—3的微观机理示意图

    Fig. 3.  (a)–(c) The schematic diagram of microscopic mechanisms occurring in devices 1–3.

    图 4  (a)—(c) 室温下器件1—3的MEL曲线

    Fig. 4.  (a)–(c) The MEL curves of devices 1–3 at room temperature.

    图 5  (a)—(c) 器件1—3在不同温度下的电流-电压特性曲线; (d) 在300 K和100 K下器件1—3中电荷载流子的运输和复合过程的微观示意图

    Fig. 5.  (a)–(c) Current-voltage curves of devices 1–3 at different operating temperatures; (d) schematic diagram of charge-carrier transport and recombination in devices 1–3 at 300 K and 100 K.

    图 6  (a)—(c) 电流500 µA时器件1—3中温度依赖的MEL曲线

    Fig. 6.  (a)–(c) Temperature-dependent MEL curves of devices 1–3 at bias current of 500 µA.

    表 1  器件1—3的具体结构

    Table 1.  Specific structure of devices 1–3.

    Device nameStructure
    Dev. 1ITO/PEDOT:PSS/Rubrene (35 nm)/BCP (3 nm)/C60 (50 nm)/BCP (10 nm)/LiF (1 nm)/Al (100 nm)
    Dev. 2ITO/PEDOT:PSS/Rubrene (35 nm)/BCP (3 nm)/C60 (50 nm)/Bphen (10 nm)/LiF (1 nm)/Al (100 nm)
    Dev. 3ITO/PEDOT:PSS/Rubrene (35 nm)/BCP (3 nm)/C60 (50 nm)/TPBi (10 nm)/LiF (1 nm)/Al (100 nm)
    下载: 导出CSV
    Baidu
  • [1]

    D’Andrade B W, Esler J, Lin C, Adamovich V, Xia S, Weaver M S, Kwong R, Brown J J 2008 Proc SPIE 7051 70510QGoogle Scholar

    [2]

    Reineke S, Lindner F, Schwartz G, Seidler N, Walzer K, Lussem B, Leo K 2009 Nature 459 234Google Scholar

    [3]

    Helander M G, Wang Z B, Qiu J, Greiner M T, Puzzo D P, Liu Z W, Lu Z H 2011 Science 332 944Google Scholar

    [4]

    Komoda T, Yamae K, Kittichungchit V, Tsuji H, Ide N 2012 J. Photopolym. Sci. Technol. 25 321Google Scholar

    [5]

    Pandey A K, Nunzi J M 2007 Adv. Mater. 19 3613Google Scholar

    [6]

    Engmann S, Barito A J, Bittle E G, Giebink N C, Richter L J, Gundlach D J 2019 Nat. Commun. 10 227Google Scholar

    [7]

    Chen Q S, Jia W Y, Chen L X, Yuan D, Zou Y, Xiong Z H 2016 Sci. Rep. 6 25331Google Scholar

    [8]

    Tu L Y, Tang X T, Wang Y, Zhao X, Ma C H, Ye S N, Xiong Z H 2021 Phys. Rev. Appl. 16 064002Google Scholar

    [9]

    Xiang C Y, Peng C, Chen Y, So F 2015 Small 11 5439Google Scholar

    [10]

    He S J, Lu Z H 2016 J. Photonics Energy 6 036001Google Scholar

    [11]

    Tang X T, Hu Y Q, Jia W Y, Pan R H, Deng J Q, He Z H, Xiong Z H 2018 ACS Appl. Mater. Interfaces 10 1948Google Scholar

    [12]

    Yasuda T, Yamaguchi Y, Zou D C, Tsutsui T 2002 Jpn. J. Appl. Phys. 41 5626Google Scholar

    [13]

    Wang Y P, Li B, Jiang C, Fang Y, Bai P, Wang Y 2021 J. Phys. Chem. C 125 16753Google Scholar

    [14]

    Hung W Y, Ke T H, Lin Y T, Wu C C, Hung T H, Chao T C, Wong K T, Wu C I 2006 Appl. Phys. Lett. 88 064102Google Scholar

    [15]

    Niu L B, Zhang Y, Chen L J, Zhang Q M, Guan Y X 2020 Org. Electron. 87 105971Google Scholar

    [16]

    Jin P F, Zhou Z Y, Wang H, Hao J J, Chen R, Wang J Y, Zhang C 2022 J. Phys. Chem. Lett. 13 2516Google Scholar

    [17]

    吴雨廷, 朱洪强, 魏福贤, 王辉耀, 陈敬, 宁亚茹, 吴凤娇, 陈晓莉, 熊祖洪 2022 71 227201Google Scholar

    Wu Y T, Zhu H Q, Wei F X, Wang H Y, Chen J, Ning Y R, Wu F J, Chen X L, Xiong Z H 2022 Acta Phys. Sin. 71 227201Google Scholar

    [18]

    Bai J W, Chen P, Lei Y L, Zhang Y, Zhang Q M 2014 Org. Electron. 15 169Google Scholar

    [19]

    Piland G B, Burdett J J, Kurunthu D, Bardeen C J 2013 J. Phys. Chem. C 117 1224Google Scholar

    [20]

    Crooker S A, Liu F, Kelley M R, Martinez N J D, Nie W, Mohite A, Nayyar I H, Tretiak S, Smith D L, Ruden P P 2014 Appl. Phys. Lett. 105 153304Google Scholar

    [21]

    Geng R, Subedi R C, Luong H M, Pham M T, Huang W C, Li X G, Hong K L, Shao M, Xiao K, Hornak L A, Nguyen T D 2018 Phys. Rev. Lett. 120 086602Google Scholar

    [22]

    Hosokawa C, Tokailin H, Higashi H, Kusumoto T 1992 Appl. Phys. Lett. 60 1220Google Scholar

    [23]

    黄维, 密保秀, 高志强 2011 有机电子学 (北京: 科学出版社) 第300页

    Huang W, Mi B X, Gao Z Q 2011 Organic Electronic (Beijing: Science Press) p300

    [24]

    Park B, In I, Gopalan P, Evans P G, King S, Lyman P F 2008 Appl. Phys. Lett. 92 133302Google Scholar

    [25]

    Kobayashi S, Takenobu T, Mori S, Fujiwara A, Iwasa Y 2003 Sci. Technol. Adv. Mater. 4 371Google Scholar

    [26]

    Peng Q, Chen P, Li F 2013 Appl. Phys. Lett. 102 023301Google Scholar

    [27]

    Qiao X F, Yuan P S, Ma D G, Ahamad T, Alshehri S M 2017 Org. Electron. 46 1Google Scholar

    [28]

    Lei Y L, Zhang Y, Liu R, Chen P, Song Q L 2009 Org. Electron. 10 889Google Scholar

    [29]

    Liu Y, Wu X M, Zhao Z H, Gao J N, Zhan J, Rui H S, Lin X, Zhang N, Hua Y L, Yin S G 2017 Appl. Surf. Sci. 413 302Google Scholar

    [30]

    Tang X T, Pan R H, Zhao X, Jia W Y, Wang Y, Ma C H 2020 Adv. Funct. Mater. 5 765Google Scholar

    [31]

    王辉耀, 宁亚茹, 吴凤娇, 赵茜, 陈敬, 朱洪强, 魏福贤, 吴雨廷, 熊祖洪 2022 71 217201Google Scholar

    Wang H Y, Ning Y R, Wu F J, Zhao X, Chen J, Zhu H Q, Wei F X, Wu Y T, Xiong Z H 2022 Acta Phys. Sin. 71 217201Google Scholar

    [32]

    Wang Y, Ning Y R, Wu F G, Chen J, Chen X L, Xiong Z H 2022 Adv. Funct. Mater. 32 2202882Google Scholar

    [33]

    宁亚茹, 赵茜, 汤仙童, 陈敬, 吴凤娇, 贾伟尧, 陈晓莉, 熊祖洪 2022 71 087201Google Scholar

    Ning Y R, Zhao X, Tang X T, Chen J, Wu F J, Jia W R, Chen X L, Xiong Z H 2022 Acta Phys. Sin. 71 087201Google Scholar

    [34]

    Peng Q M, Li A W, Fan Y X, Chen P, Li F 2014 J. Mater. Chem. C 2 6264Google Scholar

    [35]

    陈秋松, 袁德, 贾伟尧, 陈历相, 邹越, 向杰, 陈颖冰, 张巧明, 熊祖洪 2015 64 177801Google Scholar

    Chen Q S, Yuan D, Jia W Y, Chen L X, Zou Y, Xiang J, Chen Y B, Zhang Q M, Xiong Z H 2015 Acta Phys. Sin. 64 177801Google Scholar

  • [1] 杨三祥, 赵以德, 代鹏, 李建鹏, 耿海, 杨俊泰, 贾艳辉, 郭宁. 羽流区磁场对霍尔推力器性能影响的二维模拟研究.  , 2024, 73(24): . doi: 10.7498/aps.73.20241331
    [2] 任兴, 于宏宇, 张勇. 基于BCPO发光材料近紫外有机发光二极管的电致发光效率与稳定性.  , 2024, 73(4): 047801. doi: 10.7498/aps.73.20231301
    [3] 保希, 关云霞, 李万娇, 宋家一, 陈丽佳, 徐爽, 彭柯敖, 牛连斌. 载流子阶梯效应调控有机发光二极管三线态激子的解离和散射.  , 2023, 72(21): 217101. doi: 10.7498/aps.72.20230851
    [4] 刘萌娇, 张新稳, 王炯, 秦雅博, 陈月花, 黄维. 非周期微纳结构增强有机发光二极管光耦合输出的研究进展.  , 2018, 67(20): 207801. doi: 10.7498/aps.67.20181209
    [5] 张雅男, 王俊锋. 利用发光层梯度掺杂改善顶发射白光有机发光二极管光谱的稳定性.  , 2015, 64(9): 097801. doi: 10.7498/aps.64.097801
    [6] 黄迪, 徐征, 赵谡玲. 使用PTB7作为阳极修饰层提高有机发光二极管的性能.  , 2014, 63(2): 027301. doi: 10.7498/aps.63.027301
    [7] 于遥, 张晶思, 陈黛黛, 郭睿倩, 谷至华. PECVD分层结构对提高氢化非晶硅TFT迁移率的影响.  , 2013, 62(13): 138501. doi: 10.7498/aps.62.138501
    [8] 刘佰全, 兰林锋, 邹建华, 彭俊彪. 具有新型双空穴注入层的有机发光二极管.  , 2013, 62(8): 087302. doi: 10.7498/aps.62.087302
    [9] 张勇, 刘亚莉, 焦威, 陈林, 熊祖洪. 有机发光器件的磁电导效应.  , 2012, 61(11): 117106. doi: 10.7498/aps.61.117106
    [10] 杨福军, 班士良. 纤锌矿AlGaN/AlN/GaN异质结构中光学声子散射影响的电子迁移率.  , 2012, 61(8): 087201. doi: 10.7498/aps.61.087201
    [11] 焦威, 雷衍连, 张巧明, 刘亚莉, 陈林, 游胤涛, 熊祖洪. 有机发光二极管的光致磁电导效应.  , 2012, 61(18): 187305. doi: 10.7498/aps.61.187305
    [12] 刘南柳, 艾娜, 胡典钢, 余树福, 彭俊彪, 曹镛, 王坚. 旋涂方式对有机发光显示屏发光均匀性及性能的影响.  , 2011, 60(8): 087805. doi: 10.7498/aps.60.087805
    [13] 王晓艳, 张鹤鸣, 宋建军, 马建立, 王冠宇, 安久华. 应变Si/(001)Si1-xGex电子迁移率.  , 2011, 60(7): 077205. doi: 10.7498/aps.60.077205
    [14] 杨洋, 陈淑芬, 谢军, 陈春燕, 邵茗, 郭旭, 黄维. 有机发光二极管光取出技术研究进展.  , 2011, 60(4): 047809. doi: 10.7498/aps.60.047809
    [15] 李斌, 刘红侠, 袁博, 李劲, 卢凤铭. 应变Si/Si1-xGex n型金属氧化物半导体场效应晶体管反型层中的电子迁移率模型.  , 2011, 60(1): 017202. doi: 10.7498/aps.60.017202
    [16] 张勇, 刘荣, 雷衍连, 陈平, 张巧明, 熊祖洪. 基于Alq3的有机发光二极管的磁电导效应.  , 2010, 59(8): 5817-5822. doi: 10.7498/aps.59.5817
    [17] 程萍, 高峰, 陈向东, 杨继平. 偏置电场对聚对苯乙烯激发态弛豫特性的影响.  , 2010, 59(4): 2831-2835. doi: 10.7498/aps.59.2831
    [18] 王 军, 魏孝强, 饶海波, 成建波, 蒋亚东. 基于铱配合物材料的高效高稳定性有机发光二极管.  , 2007, 56(2): 1156-1161. doi: 10.7498/aps.56.1156
    [19] 张秀龙, 杨盛谊, 娄志东, 侯延冰. 有机电致发光器件的动态电学特性.  , 2007, 56(3): 1632-1636. doi: 10.7498/aps.56.1632
    [20] 郑中山, 刘忠立, 张国强, 李 宁, 范 楷, 张恩霞, 易万兵, 陈 猛, 王 曦. 埋氧层注氮工艺对部分耗尽SOI nMOSFET特性的影响.  , 2005, 54(1): 348-353. doi: 10.7498/aps.54.348
计量
  • 文章访问数:  561
  • PDF下载量:  31
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-06-22
  • 修回日期:  2024-09-18
  • 上网日期:  2024-09-25
  • 刊出日期:  2024-11-05

/

返回文章
返回
Baidu
map