-
在基于零差探测的水下连续变量量子密钥分发系统中, 测量基选择是必不可少的步骤. 然而在实际中, 接收端数模转换器的带宽有限, 这会导致测量基选择出现缺陷, 即接收方无法在相位调制器上精确地调制出相应的相位角来进行测量基选择以实施零差探测. 非理想测量基选择会引入额外的过噪声, 影响水下连续变量量子密钥分发方案的安全性. 针对这个问题, 本文提出基于非理想测量基选择的水下连续变量量子密钥分发方案, 详细分析非理想测量基选择对水下连续变量量子密钥分发系统性能的影响. 研究结果表明, 由非理想测量基选择所引入的过噪声能够降低水下高斯调制量子密钥分发的密钥率与最大传输距离, 因而降低系统的安全性. 为了实现可靠的水下连续变量量子密钥分发, 本文对非理想测量基选择所引入的额外过噪声进行定量分析并获得其安全界限, 并且考虑不同海水深度对所提出方案安全界限的影响, 有效地解决由非理想测量基选择所带来的安全隐患. 此外, 对所提出的方案, 本文不仅考虑了其渐近安全性, 也考虑了其组合安全性, 后者能够获得比前者更紧的性能曲线. 本文所提出的方案旨在推动水下连续变量量子密钥分发系统的实用化进程, 为全球量子通信网络的水下通信中水信道参数的准确评估提供理论指导.
-
关键词:
- 非理想测量基选择 /
- 连续变量量子密钥分发 /
- 海水信道 /
- 海水深度
Measurement basis choice is an essential step in the underwater continuous variable quantum key distribution system based on homodyne detection. However, in practice, finite bandwidth of analog-to-digital converter on the receiver’s side is limited, which can result in defects in the measurement basis choice. That is, the receiver cannot accurately modulate the corresponding phase angle on the phase modulator for measurement basis choice to implement homodyne detection. The imperfect measurement basis choice will introduce extra excess noise, which affects the security of underwater continuous variable quantum key distribution scheme. To solve this problem, we propose an underwater continuous variable quantum key distribution scheme based on imperfect measurement basis choice, and analyze the influence of imperfect measurement basis choice on the performance of underwater continuous variable quantum key distribution system in detail. The research results indicate that the extra excess noise introduced by imperfect measurement basis choice can reduce the secret key rate and maximum transmission distance of the underwater Gaussian modulated quantum key distribution, thus reducing the security of the system. In order to achieve reliable underwater continuous variable quantum key distribution, we quantitatively analyze the extra excess noise introduced by choosing the imperfect measurement basis and obtain its security limit. Besides, we also consider the influence of different seawater depths on the security limit of the proposed scheme, effectively solving the security risks caused by the imperfect measurement basis choice. Furthermore, for the proposed scheme, we consider not only its asymptotic security case but also its composable security case, and the performance curves obtained in the latter are tighter than that achieved in the former. The proposed scheme aims to promote the practical process of underwater continuous variable quantum key distribution system and provide theoretical guidance for accurately evaluating the water channel parameters in underwater communication of global quantum communication networks.-
Keywords:
- imperfect measurement basis choice /
- continuous variable quantum key distribution /
- seawater channel /
- seawater depth
[1] Zeng Z, Fu S, Zhang H, Dong Y, Cheng J 2017 IEEE Commun. Surv. Tutorials 19 204
Google Scholar
[2] Hanson F, Radic S 2008 Appl. Opt. 47 277
Google Scholar
[3] Kong M, Wang J, Chen Y, Ali T, Sarwar R, Qiu Y, Wang S, Han J, Xu J 2017 Opt. Express 25 21509
Google Scholar
[4] Wang J, Lu C, Li S, Xu Z 2019 Opt. Express 27 12171
Google Scholar
[5] Xu F, Ma X, Zhang Q, Lo H K, Pan J W 2020 Rev. Mod. Phys. 92 025002
Google Scholar
[6] Pirandola S, Andersen U L, Banchi L, Berta M, Bunandar D, Colbeck R, Englund D, Gehring T, Lupo C, Ottaviani C, Pereira J L, Razavi M, Shaari J S, Tomamichel M, Usenko V C, Vallone G, Villoresi P, Wallden P 2020 Adv. Opt. Photonics 12 1012
Google Scholar
[7] Liu Y, Zhang W J, Jiang C, Chen J P, Zhang C, Pan W X, Ma D, Dong H, Xiong J M, Zhang C J, Li H, Wang R C, Wu J, Chen T Y, You L, Wang X B, Zhang Q, Pan J W 2023 Phys. Rev. Lett. 130 210801
Google Scholar
[8] Li W, Zhang L, Tan H, Lu Y, Liao S K, Huang J, Li H, Wang Z, Mao H K, Yan B, Li Q, Liu Y, Zhang Q, Peng C Z, You L, Xu F, Pan J W 2023 Nat. Photonics 17 416
Google Scholar
[9] Zahidy M, Mikkelsen M T, Müller R, Lio B D, Krehbiel M, Wang Y, Bart N, Wieck A D, Ludwig A, Galili M, Forchhammer S, Lodahl P, Oxenløwe L K, Bacco D, Midolo L 2024 npj Quantum Inf. 10 2
Google Scholar
[10] Zhu H T, Huang Y, Liu H, Zeng P, Zou M, Dai Y, Tang S, Li H, You L, Wang Z, Chen Y A, Ma X, Chen T Y, Pan J W 2023 Phys. Rev. Lett. 130 030801
Google Scholar
[11] Grosshans F, Grangier P 2002 Phys. Rev. Lett. 88 057902
Google Scholar
[12] Laudenbach F, Pacher C, Fung C H F, Poppe A, Peev M, Schrenk B, Hentschel M, Walther P, Hübel H 2018 Adv. Quantum Technol. 1 1800011
Google Scholar
[13] Zhang Y, Bian Y, Li Z, Yu S, Guo H 2024 Appl. Phys. Rev. 11 011318
Google Scholar
[14] 吴晓东, 黄端 2023 72 050303
Google Scholar
Wu X D, Huang D 2023 Acta Phys. Sin. 72 050303
Google Scholar
[15] Wu X D, Wang Y J, Zhong H, Liao Q, Guo Y 2019 Front. Phys. 14 41501
Google Scholar
[16] Weedbrook C, Pirandola S, García-Patrón R, Cerf N J, Ralph T C, Shapiro J H, Lloyd S 2012 Rev. Mod. Phys. 84 621
Google Scholar
[17] Renner R, Cirac J I 2009 Phys. Rev. Lett. 102 110504
Google Scholar
[18] Leverrier A, Grosshans F, Grangier P 2010 Phys. Rev. A 81 062343
Google Scholar
[19] Leverrier A, García-Patrón R, Renner R, Cerf N J 2013 Phys. Rev. Lett. 110 030502
Google Scholar
[20] Leverrier A 2015 Phys. Rev. Lett. 114 070501
Google Scholar
[21] Leverrier A 2017 Phys. Rev. Lett. 118 200501
Google Scholar
[22] Grosshans F, Assche G V, Wenger J, Brouri R, Cerf N J, Grangier P 2003 Nature 421 238
Google Scholar
[23] Jouguet P, Kunz-Jacques S, Leverrier A, Grangier P, Diamanti E 2013 Nat. Photonics 7 378
Google Scholar
[24] Huang D, Lin D, Wang C, Liu W, Fang S, Peng J, Huang P, Zeng G 2015 Opt. Express 23 17511
Google Scholar
[25] Huang D, Huang P, Lin D , Zeng G 2016 Sci. Rep. 6 19201
Google Scholar
[26] Zhang G, Haw J Y, Cai H, Xu F, Assad S M, Fitzsimons J F, Zhou X, Zhang Y, Yu S, Wu J, Ser W, Kwek L C, Liu A Q 2019 Nat. Photonics 13 839
Google Scholar
[27] Zhang Y, Chen Z, Pirandola S, Wang X, Zhou C, Chu B, Zhao Y, Xu B, Yu S, Guo H 2020 Phys. Rev. Lett. 125 010502
Google Scholar
[28] Williams B P, Qi B, Alshowkan M, Evans P G, Peters N A 2024 Phys. Rev. Appl. 21 014056
Google Scholar
[29] Hajomer A A E, Derkach I, Jain N, Chin H M, Andersen U L, Gehring T 2024 Sci. Adv. 10 eadi9474
Google Scholar
[30] Grice W P, Qi B 2019 Phys. Rev. A 100 022339
Google Scholar
[31] 吴晓东, 黄端 2024 73 020304
Google Scholar
Wu X D, Huang D 2024 Acta Phys. Sin. 73 020304
Google Scholar
[32] Zhao W, Shi R, Wu X, Wang F, Ruan X 2023 Opt. Express 31 17003
Google Scholar
[33] Shi P, Zhao S C, Gu Y J, Li W D 2015 J. Opt. Soc. Am. A: 32 349
Google Scholar
[34] Zhao S C, Han X H, Xiao Y, Shen Y, Gu Y J, Li W D 2019 J. Opt. Soc. Am. A: 36 883
Google Scholar
[35] Ji L, Gao J, Yang A L, Feng Z, Lin X F, Li Z G, Jin X M 2017 Opt. Express 25 19795
Google Scholar
[36] Feng Z, Li S, Xu Z 2021 Opt. Express 29 8725
Google Scholar
[37] Zhao S, Li W, Shen Y, Yu Y H, Han X H, Zeng H, Cai M, Qian T, Wang S, Wang Z, Xiao Y, Gu Y 2019 Appl. Opt. 58 3902
Google Scholar
[38] Hu C Q, Yan Z Q, Gao J, Li Z M, Zhou H, Dou J P, Jin X M 2021 Phys. Rev. Appl. 15 024060
Google Scholar
[39] Li D D, Shen Q, Chen W, Li Y, Han X, Yang K X, Xu Y, Lin J, Wang C Z, Yong H L, Liu W Y, Cao Y, Yin J, Liao S K, Ren J G 2019 Opt. Commun. 452 220
Google Scholar
[40] Guo Y, Xie C L, Huang P, Li J W, Zhang L, Huang D, Zeng G H 2018 Phys. Rev. A 97 052326
Google Scholar
[41] Xie C L, Guo Y, Wang Y J, Huang D, Zhang L 2018 Chin. Phys. Lett. 35 090302
Google Scholar
[42] Ruan X, Zhang H, Zhao W, Wang X, Li X, Guo Y 2019 Appl. Sci. 9 4956
Google Scholar
[43] Mao Y, Wu X, Huang W, Liao Q, Deng H, Wang Y, Guo Y 2020 Appl. Sci. 10 5744
Google Scholar
[44] Xiang Y, Wang Y, Ruan X, Zuo Z, Guo Y 2021 Phys. Scr. 96 065103
Google Scholar
[45] Tang X, Chen Z, Zhao Z, Kumar R, Dong Y 2022 Opt. Express 30 32428
Google Scholar
[46] Liu W, Peng J, Qi J, Cao Z, He C 2020 Laser Phys. Lett. 17 055203
Google Scholar
[47] Gilerson A, Zhou J, Hlaing S, Ioannou I, Schalles J, Gross B, Moshary F, Ahmed S 2007 Opt. Express 15 15702
Google Scholar
[48] Gariano J, Djordjevic I B 2019 Opt. Express 27 3055
Google Scholar
[49] Fossier S, Diamanti E, Debuisschert T, Tualle-Brouri R, Grangier P 2009 J. Phys. B: At. Mol. Opt. Phys. 42 114014
Google Scholar
[50] Prieur L, Sathyendranath S 1981 Limnol. Oceanogr. 26 671
Google Scholar
[51] Uitz J, Claustre H, Morel A, Hooker S B 2006 J. Geophys. Res. Oceans. 111 C08005
Google Scholar
-
图 1 基于非理想测量基选择的水下CV-QKD制备-测量方案图. RNG为随机数发生器, AM为振幅调制器, PM为相位调制器, MBC表示测量基选择, $ {T_{\text{s}}} $表示海水信道的透过率, $ {\xi _{\text{s}}} $表示海水信道过噪声
Fig. 1. Prepare-and-measure version of underwater continuous variable quantum key distribution scheme based on imperfect measurement basis choice. RNG, random number generator; AM, amplitude modulator; PM, phase modulator; MBC, measurement basis choice; $ {T_{\text{s}}} $, the transmittance of seawater channel; $ {\xi _{\text{s}}} $, the excess noise of seawater channel.
-
[1] Zeng Z, Fu S, Zhang H, Dong Y, Cheng J 2017 IEEE Commun. Surv. Tutorials 19 204
Google Scholar
[2] Hanson F, Radic S 2008 Appl. Opt. 47 277
Google Scholar
[3] Kong M, Wang J, Chen Y, Ali T, Sarwar R, Qiu Y, Wang S, Han J, Xu J 2017 Opt. Express 25 21509
Google Scholar
[4] Wang J, Lu C, Li S, Xu Z 2019 Opt. Express 27 12171
Google Scholar
[5] Xu F, Ma X, Zhang Q, Lo H K, Pan J W 2020 Rev. Mod. Phys. 92 025002
Google Scholar
[6] Pirandola S, Andersen U L, Banchi L, Berta M, Bunandar D, Colbeck R, Englund D, Gehring T, Lupo C, Ottaviani C, Pereira J L, Razavi M, Shaari J S, Tomamichel M, Usenko V C, Vallone G, Villoresi P, Wallden P 2020 Adv. Opt. Photonics 12 1012
Google Scholar
[7] Liu Y, Zhang W J, Jiang C, Chen J P, Zhang C, Pan W X, Ma D, Dong H, Xiong J M, Zhang C J, Li H, Wang R C, Wu J, Chen T Y, You L, Wang X B, Zhang Q, Pan J W 2023 Phys. Rev. Lett. 130 210801
Google Scholar
[8] Li W, Zhang L, Tan H, Lu Y, Liao S K, Huang J, Li H, Wang Z, Mao H K, Yan B, Li Q, Liu Y, Zhang Q, Peng C Z, You L, Xu F, Pan J W 2023 Nat. Photonics 17 416
Google Scholar
[9] Zahidy M, Mikkelsen M T, Müller R, Lio B D, Krehbiel M, Wang Y, Bart N, Wieck A D, Ludwig A, Galili M, Forchhammer S, Lodahl P, Oxenløwe L K, Bacco D, Midolo L 2024 npj Quantum Inf. 10 2
Google Scholar
[10] Zhu H T, Huang Y, Liu H, Zeng P, Zou M, Dai Y, Tang S, Li H, You L, Wang Z, Chen Y A, Ma X, Chen T Y, Pan J W 2023 Phys. Rev. Lett. 130 030801
Google Scholar
[11] Grosshans F, Grangier P 2002 Phys. Rev. Lett. 88 057902
Google Scholar
[12] Laudenbach F, Pacher C, Fung C H F, Poppe A, Peev M, Schrenk B, Hentschel M, Walther P, Hübel H 2018 Adv. Quantum Technol. 1 1800011
Google Scholar
[13] Zhang Y, Bian Y, Li Z, Yu S, Guo H 2024 Appl. Phys. Rev. 11 011318
Google Scholar
[14] 吴晓东, 黄端 2023 72 050303
Google Scholar
Wu X D, Huang D 2023 Acta Phys. Sin. 72 050303
Google Scholar
[15] Wu X D, Wang Y J, Zhong H, Liao Q, Guo Y 2019 Front. Phys. 14 41501
Google Scholar
[16] Weedbrook C, Pirandola S, García-Patrón R, Cerf N J, Ralph T C, Shapiro J H, Lloyd S 2012 Rev. Mod. Phys. 84 621
Google Scholar
[17] Renner R, Cirac J I 2009 Phys. Rev. Lett. 102 110504
Google Scholar
[18] Leverrier A, Grosshans F, Grangier P 2010 Phys. Rev. A 81 062343
Google Scholar
[19] Leverrier A, García-Patrón R, Renner R, Cerf N J 2013 Phys. Rev. Lett. 110 030502
Google Scholar
[20] Leverrier A 2015 Phys. Rev. Lett. 114 070501
Google Scholar
[21] Leverrier A 2017 Phys. Rev. Lett. 118 200501
Google Scholar
[22] Grosshans F, Assche G V, Wenger J, Brouri R, Cerf N J, Grangier P 2003 Nature 421 238
Google Scholar
[23] Jouguet P, Kunz-Jacques S, Leverrier A, Grangier P, Diamanti E 2013 Nat. Photonics 7 378
Google Scholar
[24] Huang D, Lin D, Wang C, Liu W, Fang S, Peng J, Huang P, Zeng G 2015 Opt. Express 23 17511
Google Scholar
[25] Huang D, Huang P, Lin D , Zeng G 2016 Sci. Rep. 6 19201
Google Scholar
[26] Zhang G, Haw J Y, Cai H, Xu F, Assad S M, Fitzsimons J F, Zhou X, Zhang Y, Yu S, Wu J, Ser W, Kwek L C, Liu A Q 2019 Nat. Photonics 13 839
Google Scholar
[27] Zhang Y, Chen Z, Pirandola S, Wang X, Zhou C, Chu B, Zhao Y, Xu B, Yu S, Guo H 2020 Phys. Rev. Lett. 125 010502
Google Scholar
[28] Williams B P, Qi B, Alshowkan M, Evans P G, Peters N A 2024 Phys. Rev. Appl. 21 014056
Google Scholar
[29] Hajomer A A E, Derkach I, Jain N, Chin H M, Andersen U L, Gehring T 2024 Sci. Adv. 10 eadi9474
Google Scholar
[30] Grice W P, Qi B 2019 Phys. Rev. A 100 022339
Google Scholar
[31] 吴晓东, 黄端 2024 73 020304
Google Scholar
Wu X D, Huang D 2024 Acta Phys. Sin. 73 020304
Google Scholar
[32] Zhao W, Shi R, Wu X, Wang F, Ruan X 2023 Opt. Express 31 17003
Google Scholar
[33] Shi P, Zhao S C, Gu Y J, Li W D 2015 J. Opt. Soc. Am. A: 32 349
Google Scholar
[34] Zhao S C, Han X H, Xiao Y, Shen Y, Gu Y J, Li W D 2019 J. Opt. Soc. Am. A: 36 883
Google Scholar
[35] Ji L, Gao J, Yang A L, Feng Z, Lin X F, Li Z G, Jin X M 2017 Opt. Express 25 19795
Google Scholar
[36] Feng Z, Li S, Xu Z 2021 Opt. Express 29 8725
Google Scholar
[37] Zhao S, Li W, Shen Y, Yu Y H, Han X H, Zeng H, Cai M, Qian T, Wang S, Wang Z, Xiao Y, Gu Y 2019 Appl. Opt. 58 3902
Google Scholar
[38] Hu C Q, Yan Z Q, Gao J, Li Z M, Zhou H, Dou J P, Jin X M 2021 Phys. Rev. Appl. 15 024060
Google Scholar
[39] Li D D, Shen Q, Chen W, Li Y, Han X, Yang K X, Xu Y, Lin J, Wang C Z, Yong H L, Liu W Y, Cao Y, Yin J, Liao S K, Ren J G 2019 Opt. Commun. 452 220
Google Scholar
[40] Guo Y, Xie C L, Huang P, Li J W, Zhang L, Huang D, Zeng G H 2018 Phys. Rev. A 97 052326
Google Scholar
[41] Xie C L, Guo Y, Wang Y J, Huang D, Zhang L 2018 Chin. Phys. Lett. 35 090302
Google Scholar
[42] Ruan X, Zhang H, Zhao W, Wang X, Li X, Guo Y 2019 Appl. Sci. 9 4956
Google Scholar
[43] Mao Y, Wu X, Huang W, Liao Q, Deng H, Wang Y, Guo Y 2020 Appl. Sci. 10 5744
Google Scholar
[44] Xiang Y, Wang Y, Ruan X, Zuo Z, Guo Y 2021 Phys. Scr. 96 065103
Google Scholar
[45] Tang X, Chen Z, Zhao Z, Kumar R, Dong Y 2022 Opt. Express 30 32428
Google Scholar
[46] Liu W, Peng J, Qi J, Cao Z, He C 2020 Laser Phys. Lett. 17 055203
Google Scholar
[47] Gilerson A, Zhou J, Hlaing S, Ioannou I, Schalles J, Gross B, Moshary F, Ahmed S 2007 Opt. Express 15 15702
Google Scholar
[48] Gariano J, Djordjevic I B 2019 Opt. Express 27 3055
Google Scholar
[49] Fossier S, Diamanti E, Debuisschert T, Tualle-Brouri R, Grangier P 2009 J. Phys. B: At. Mol. Opt. Phys. 42 114014
Google Scholar
[50] Prieur L, Sathyendranath S 1981 Limnol. Oceanogr. 26 671
Google Scholar
[51] Uitz J, Claustre H, Morel A, Hooker S B 2006 J. Geophys. Res. Oceans. 111 C08005
Google Scholar
计量
- 文章访问数: 992
- PDF下载量: 41
- 被引次数: 0