搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高效率时间复用Duan-Lukin-Cirac-Zoller存储方案的实验研究

温亚飞 庄园园 王志强 高士回

引用本文:
Citation:

高效率时间复用Duan-Lukin-Cirac-Zoller存储方案的实验研究

温亚飞, 庄园园, 王志强, 高士回

Experimental study of efficient temporal-multimode Duan-Lukin-Cirac-Zoller storage scheme

Wen Ya-Fei, Zhuang Yuan-Yuan, Wang Zhi-Qiang, Gao Shi-Hui
cstr: 32037.14.aps.73.20240799
PDF
HTML
导出引用
  • 大规模广域量子网络的构建需要在量子节点之间进行纠缠交换及量子中继等过程, 基于自发拉曼散射过程在冷原子中制备空间复用、时间复用以及多模式复用的光与原子纠缠界面为实现量子中继提供有效技术途径, 其中读出效率的高低具有至关重要的作用. 通过设计可扩展型脉冲光制备技术及能级的合理选择, 本文构建了具有高效率的六路时间复用的光与原子纠缠源. 实现纠缠源纠缠产生概率5.83倍的增强, 同时读出效率约38%, 对应Bell参数约为2.35. 本研究成果为长距离量子通信及广域大规模量子网络构建提供有效资源及技术支撑.
    Quantum interfaces that generate entanglement or correlations between a photon and an atomic memory are fundamental building blocks in quantum repeater research. Temporal, spatial, and spectral multiplexed atom–photon entanglement interfaces in cold atomic systems based on spontaneous Raman scattering processes, present an effective technical approach to realizing quantum repeaters. Compared with the other schemes, temporal-multiplexing schemes are particularly attractive since they repeatedly use the same physical process. In these schemes, readout efficiency plays a crucial role. Theoretical models indicate that even if the readout efficiency is increased by 1%, the probability of long-distance entanglement distribution will be increased by 7%–18%. However, current implementation of temporal-multimode quantum memory often suffers low readout efficiency unless an optical cavity or an atomic ensemble with a large optical-depth is adopted.In this study, we solve this challenge by using the expandable pulsed light fabricating technology and carefully selecting energy level transitions, so as to develop an efficient temporal-multiplexed quantum source. Our approach involves applying a train of write laser pulses to an atomic ensemble from different directions, thereby creating spin-wave memories and Stokes-photon emissions. We design an expandable pulsed light fabrication device based on the principle of optical path reversibility, allowing a writing laser beam to pass through an acousto-optic modulator (AOM) network in two different directions. This setup enables precise control over the directions of the write pulse train through real-time manipulation of the field-programmable gate array (FPGA) and the diffraction order of the AOMs. In our experiment, we prepare six pairs of modes. After detecting Stokes photons during the experimental cycle, the FPGA outputs a feedforward signal after a specified storage time, triggering the application of a corresponding reading pulse from the read AOM network to the atomic ensemble, thereby generating an anti-Stokes photon. To enhance readout efficiency, we optimize the energy level structure of the read pulse transitions, $ \left| {{{b}} \to {{{e}}_2}} \right\rangle $ to $ \left| {{{b}} \to {{{e}}_1}} \right\rangle $; specifically, we adjust the transition frequencies of the read pulses by comparing with those used in current temporal-multimode quantum memory schemes. Theoretical calculations show that when the frequencies of the read pulses are tuned to the transitions $ \left| {{{b}} \to {{{e}}_1}} \right\rangle $ and $ \left| {{{b}} \to {{{e}}_2}} \right\rangle $, the readout efficiencies are about 33% and 15%, suggesting that the chosen energy level transitions can double the readout efficiency.Experimental results indicate a readout efficiency of 38% for the multiplexed source and the Bell parameter of 2.35. Additionally, our device has a 5.83-fold higher probability of successfully generating entanglement than a single channel entanglement source. Our method is cost-effective, easy to operate, and highly applicable. For instance, based on our findings, the readout efficiency can be further improved through cavity-enhanced atom–photon coupling, and entanglement fidelity can be increased by suppressing noise in temporal-multimode memory schemes. This work provides a solid foundation and effective methods for realizing the high-efficiency temporal-multimode quantum memory and developing the large-scale quantum networks.
      通信作者: 温亚飞, 18234061008@163.com
    • 基金项目: 山西省自然科学基金 (批准号: 20210302124265) 和山西省高等学校科技创新计划科研项目(批准号: 2021L426, 2021L441)资助的课题.
      Corresponding author: Wen Ya-Fei, 18234061008@163.com
    • Funds: Project supported by the Natural Science Foundation of Shanxi Province, China (Grant No. 20210302124265) and the Scientific and Technological Programs of Higher Education Institutions in Shanxi, China (Grant Nos. 2021L426, 2021L441).
    [1]

    Kimble H J 2008 Nature 453 1023Google Scholar

    [2]

    Simon C 2017 Nat. Photonics 11 678Google Scholar

    [3]

    Sangouard N, Simon C, Minář J, Zbinden H, de Riedmatten H, Gisin N 2007 Phys. Rev. A 76 050301Google Scholar

    [4]

    Duan L M, Lukin M D, Cirac J I, Zoller P 2001 Nature 414 413Google Scholar

    [5]

    廖骎, 柳海杰, 王铮, 朱凌瑾 2023 72 040301Google Scholar

    Liao Q, Liu H J, Wang Z, Zhu L J 2023 Acta Phys. Sin. 72 040301Google Scholar

    [6]

    Zheng Q L, Liu J C, Wu C, Xue S C, Zhu P Y, Wang Y, Yu X Y, Yu M M, Deng M T, Wu J J, Xu P 2022 Chin. Phys. B 31 024206Google Scholar

    [7]

    Sun Y, Sun C W, Zhou W, Yang R, Duan J C, Gong Y X, Xu P, Zhu S N 2023 Chin. Phys. B 32 080308Google Scholar

    [8]

    Abruzzo S, Kampermann H, Bruß D 2014 Phys. Rev. A 89 012301Google Scholar

    [9]

    Inagaki T, Matsuda N, Tadanaga O, Asobe M, Takesue H 2013 Opt. Express 21 23241Google Scholar

    [10]

    Ding D S, Zhang W, Zhou Z Y, Shi S, Shi B S, Guo G C 2015 Nat. Photonics 9 332Google Scholar

    [11]

    Wu Y L, Tian L, Xu Z X, Ge W, Chen L R, Li S J, Peng K C 2016 Phys. Rev. A 93 052327Google Scholar

    [12]

    Wen Y F, Zhou P, Xu Z, Yuan L, Zhang H, Wang S, Wang H 2019 Phys. Rev. A 100 012342Google Scholar

    [13]

    Liu H L, Wang M J, Jiao H L, Lu J J, Fan W X, Li S J, Wang H 2023 Opt. Express 31 7200Google Scholar

    [14]

    Li Y, Wen Y F, Wang M J, Liu C, Liu H L, Li S J, Wang H 2022 Phy. Rev. A 106 022610Google Scholar

    [15]

    Pu Y F, Jiang N, Chang W, Yang H X, Li C, Duan L M 2017 Nat. Commun. 8 15359Google Scholar

    [16]

    Tian L, Xu Z X, Chen L R, Ge W, Yuan H X, Wen Y F, Wang H 2017 Phys. Rev. Lett. 119 130505Google Scholar

    [17]

    Lipka M, Mazelanik M, Leszczyński A, Wasilewski W, Parniak M 2021 Commun. Phys. 4 46Google Scholar

    [18]

    Krovi H, Guha S, Dutton Z, Slater J A, Simon C, Tittel W 2016 Appl. Phys. B. 52 122Google Scholar

    [19]

    Saglamyurek E, Puigibert M G, Zhou Q, Giner L, Marsili F, Verma V B, Nam S W, Oesterling L, Nippa D, Oblak D, Tittel W 2016 Nat. Commun. 7 11202Google Scholar

    [20]

    Albrecht B, Farrera P, Heinze G, Cristiani M, de Riedmatten H 2015 Phys. Rev. Lett. 115 160501Google Scholar

    [21]

    Farrera P, Heinze G, de Riedmatten H 2018 Phys. Rev. Lett. 120 100501Google Scholar

    [22]

    Heller L, Farrera P, Heinze G, de Riedmatten H 2020 Phys. Rev. Lett. 124 210504Google Scholar

    [23]

    Sangouard N, Simon C, de Riedmatten H, Gisin N 2011 Rev. Mod. Phys. 83 33Google Scholar

    [24]

    Jiang L, Taylor J M, Lukin M D 2007 Phys. Rev. A 76 012301Google Scholar

    [25]

    温亚飞, 田剑锋, 王志强, 庄园园 2023 72 060301Google Scholar

    Wen Y F, Tian J F, Wang Z Q, Zhuang Y Y 2023 Acta Phys. Sin. 72 060301Google Scholar

    [26]

    Yang S J, Wang X J, Li J, Rui J, Bao X H, Pan J W 2015 Phys. Rev. Lett. 114 210501Google Scholar

    [27]

    Bao X H, Reingruber A, Dietrich P, Rui J, Dück A, Strassel T, Li L, Liu N L, Zhao B, Pan J W 2012 Nat. Phys. 8 517Google Scholar

    [28]

    Simon C, de Riedmatten H, Afzelius M 2010 Phys. Rev. A 82 010304Google Scholar

    [29]

    Cho Y W, Campbell G T, Everett J L, Bernu J, Higginbottom D B, Cao M T, Geng J, Robins N P, Lam P K, Buchler B C 2016 Optica 3 100Google Scholar

    [30]

    Zhao B, Chen Y A, Bao X H, Strassel T, Chuu C S, Jin X M, Schmiedmayer J, Yuan Z S, Chen S, Pan J W 2009 Nat. Phys. 5 95Google Scholar

    [31]

    周湃, 温亚飞, 袁亮, 李雅, 李淑静, 王海 2020 量子光学学报 26 6Google Scholar

    Zhou P, Wen Y F, Yuan L, Li Y, Li S J, Wang H 2020 Acta Sin. Quan. Opt. 26 6Google Scholar

  • 图 1  (a) 实验装置图, 其中Wi (Ri)为第i路写(读)光, Filters为滤波器, D (T)为单光子探测器, PBS为偏振分束棱镜, AOM为声光调制器; (b) 原子能级图, 其中$ {\sigma ^ + } $($ {\sigma ^ - } $)为不同偏振的出射光子(右旋或左旋); (c) 实验时序图, 其中W, C, R为写光、清洁光(泵浦光)、读光; DG, TG为单光子探测器门开关

    Fig. 1.  (a) Experimental setup; Wi (Ri), the i-th write (read) pulses; Filters, F-P etalons; D (T), single photon detector; PBS, polarization beam splitter; AOM, acousto-optic modulator; (b) relevant atomic levels; $ {\sigma ^ + } $($ {\sigma ^ - } $), right (left) polarization of emitted photon; (c) time sequence of the experimental trials; W, C, R, write, cleaning, and read pulses; DG (TG), timeline of the D (T) detector gate.

    图 3  时间复用量子存储Bell参数S (m)随时间模式数m的变化

    Fig. 3.  Measured Bell parameter S (m) as a function of the mode number m.

    图 2  测量Stokes光子探测概率$P_{\text{S}}^m$和读出效率随时间模式数m的变化

    Fig. 2.  Measured Stokes detection probability $P_{\text{S}}^m$ and readout efficiency as a function of the mode number m.

    图 4  测量Bell参数S (m)与存储时间$\tau $变化关系

    Fig. 4.  Measurements of the Bell parameter S (m) as a function of $\tau $.

    表 1  单路纠缠源读出效率

    Table 1.  Readout efficiency of single channel entangled source.

    i 1 2 3 4 5 6
    恢复效率$ {\gamma _{{i}}} $/% 0.39 0.36 0.35 0.38 0.38 0.36
    下载: 导出CSV

    表 2  单路纠缠源Bell参数测量

    Table 2.  Measurement of Bell parameters for single channel entanglement source.

    i 1 2 3 4 5 6
    Bell参数S 2.50 2.47 2.48 2.51 2.47 2.46
    下载: 导出CSV
    Baidu
  • [1]

    Kimble H J 2008 Nature 453 1023Google Scholar

    [2]

    Simon C 2017 Nat. Photonics 11 678Google Scholar

    [3]

    Sangouard N, Simon C, Minář J, Zbinden H, de Riedmatten H, Gisin N 2007 Phys. Rev. A 76 050301Google Scholar

    [4]

    Duan L M, Lukin M D, Cirac J I, Zoller P 2001 Nature 414 413Google Scholar

    [5]

    廖骎, 柳海杰, 王铮, 朱凌瑾 2023 72 040301Google Scholar

    Liao Q, Liu H J, Wang Z, Zhu L J 2023 Acta Phys. Sin. 72 040301Google Scholar

    [6]

    Zheng Q L, Liu J C, Wu C, Xue S C, Zhu P Y, Wang Y, Yu X Y, Yu M M, Deng M T, Wu J J, Xu P 2022 Chin. Phys. B 31 024206Google Scholar

    [7]

    Sun Y, Sun C W, Zhou W, Yang R, Duan J C, Gong Y X, Xu P, Zhu S N 2023 Chin. Phys. B 32 080308Google Scholar

    [8]

    Abruzzo S, Kampermann H, Bruß D 2014 Phys. Rev. A 89 012301Google Scholar

    [9]

    Inagaki T, Matsuda N, Tadanaga O, Asobe M, Takesue H 2013 Opt. Express 21 23241Google Scholar

    [10]

    Ding D S, Zhang W, Zhou Z Y, Shi S, Shi B S, Guo G C 2015 Nat. Photonics 9 332Google Scholar

    [11]

    Wu Y L, Tian L, Xu Z X, Ge W, Chen L R, Li S J, Peng K C 2016 Phys. Rev. A 93 052327Google Scholar

    [12]

    Wen Y F, Zhou P, Xu Z, Yuan L, Zhang H, Wang S, Wang H 2019 Phys. Rev. A 100 012342Google Scholar

    [13]

    Liu H L, Wang M J, Jiao H L, Lu J J, Fan W X, Li S J, Wang H 2023 Opt. Express 31 7200Google Scholar

    [14]

    Li Y, Wen Y F, Wang M J, Liu C, Liu H L, Li S J, Wang H 2022 Phy. Rev. A 106 022610Google Scholar

    [15]

    Pu Y F, Jiang N, Chang W, Yang H X, Li C, Duan L M 2017 Nat. Commun. 8 15359Google Scholar

    [16]

    Tian L, Xu Z X, Chen L R, Ge W, Yuan H X, Wen Y F, Wang H 2017 Phys. Rev. Lett. 119 130505Google Scholar

    [17]

    Lipka M, Mazelanik M, Leszczyński A, Wasilewski W, Parniak M 2021 Commun. Phys. 4 46Google Scholar

    [18]

    Krovi H, Guha S, Dutton Z, Slater J A, Simon C, Tittel W 2016 Appl. Phys. B. 52 122Google Scholar

    [19]

    Saglamyurek E, Puigibert M G, Zhou Q, Giner L, Marsili F, Verma V B, Nam S W, Oesterling L, Nippa D, Oblak D, Tittel W 2016 Nat. Commun. 7 11202Google Scholar

    [20]

    Albrecht B, Farrera P, Heinze G, Cristiani M, de Riedmatten H 2015 Phys. Rev. Lett. 115 160501Google Scholar

    [21]

    Farrera P, Heinze G, de Riedmatten H 2018 Phys. Rev. Lett. 120 100501Google Scholar

    [22]

    Heller L, Farrera P, Heinze G, de Riedmatten H 2020 Phys. Rev. Lett. 124 210504Google Scholar

    [23]

    Sangouard N, Simon C, de Riedmatten H, Gisin N 2011 Rev. Mod. Phys. 83 33Google Scholar

    [24]

    Jiang L, Taylor J M, Lukin M D 2007 Phys. Rev. A 76 012301Google Scholar

    [25]

    温亚飞, 田剑锋, 王志强, 庄园园 2023 72 060301Google Scholar

    Wen Y F, Tian J F, Wang Z Q, Zhuang Y Y 2023 Acta Phys. Sin. 72 060301Google Scholar

    [26]

    Yang S J, Wang X J, Li J, Rui J, Bao X H, Pan J W 2015 Phys. Rev. Lett. 114 210501Google Scholar

    [27]

    Bao X H, Reingruber A, Dietrich P, Rui J, Dück A, Strassel T, Li L, Liu N L, Zhao B, Pan J W 2012 Nat. Phys. 8 517Google Scholar

    [28]

    Simon C, de Riedmatten H, Afzelius M 2010 Phys. Rev. A 82 010304Google Scholar

    [29]

    Cho Y W, Campbell G T, Everett J L, Bernu J, Higginbottom D B, Cao M T, Geng J, Robins N P, Lam P K, Buchler B C 2016 Optica 3 100Google Scholar

    [30]

    Zhao B, Chen Y A, Bao X H, Strassel T, Chuu C S, Jin X M, Schmiedmayer J, Yuan Z S, Chen S, Pan J W 2009 Nat. Phys. 5 95Google Scholar

    [31]

    周湃, 温亚飞, 袁亮, 李雅, 李淑静, 王海 2020 量子光学学报 26 6Google Scholar

    Zhou P, Wen Y F, Yuan L, Li Y, Li S J, Wang H 2020 Acta Sin. Quan. Opt. 26 6Google Scholar

  • [1] 孟婧, 高博文. 新型高效率和高稳定性钙钛矿/有机集成太阳电池光伏性能研究.  , 2023, 72(1): 018802. doi: 10.7498/aps.72.20221120
    [2] 林明月, 巨博, 李燕, 陈雪莲. 2-溴对苯二甲酸钝化的全无机钙钛矿电池的性能.  , 2021, 70(12): 128803. doi: 10.7498/aps.70.20202005
    [3] 姬超, 梁春军, 由芳田, 何志群. 界面修饰对有机-无机杂化钙钛矿太阳能电池性能的影响.  , 2021, 70(2): 028402. doi: 10.7498/aps.70.20201222
    [4] 周朋超, 张卫东, 顾嘉陆, 陈卉敏, 胡腾达, 蒲华燕, 兰伟霞, 魏斌. 基于三元非富勒烯体系的高效有机太阳能电池.  , 2020, 69(19): 198801. doi: 10.7498/aps.69.20200624
    [5] 杨德文, 陈昌华, 史彦超, 肖仁珍, 滕雁, 范志强, 刘文元, 宋志敏, 孙钧. X波段高效率速调型相对论返波管研究.  , 2020, 69(16): 164102. doi: 10.7498/aps.69.20200434
    [6] 李少华, 李海涛, 江亚晓, 涂丽敏, 李文标, 潘玲, 杨仕娥, 陈永生. 高效平面异质结有机-无机杂化钙钛矿太阳电池的质量管理.  , 2018, 67(15): 158801. doi: 10.7498/aps.67.20172600
    [7] 温亚飞, 王圣智, 徐忠孝, 李淑静, 王海. 冷原子系综中两正交光场偏振模高效率存储的实验研究.  , 2018, 67(1): 014204. doi: 10.7498/aps.67.20171217
    [8] 郭靖, 何广源, 焦中兴, 王彪. 高效率内腔式2 μm简并光学参量振荡器.  , 2015, 64(8): 084207. doi: 10.7498/aps.64.084207
    [9] 尤良芳, 令维军, 李可, 张明霞, 左银燕, 王屹山. 基于单个BBO晶体载波包络相位稳定的高效率光参量放大器.  , 2014, 63(21): 214203. doi: 10.7498/aps.63.214203
    [10] 侯国付, 薛俊明, 袁育杰, 张晓丹, 孙建, 陈新亮, 耿新华, 赵颖. 高压射频等离子体增强化学气相沉积制备高效率硅薄膜电池的若干关键问题研究.  , 2012, 61(5): 058403. doi: 10.7498/aps.61.058403
    [11] 肖虎, 冷进勇, 吴武明, 王小林, 马阎星, 周朴, 许晓军, 赵国民. 同带抽运高效率光纤放大器.  , 2011, 60(12): 124207. doi: 10.7498/aps.60.124207
    [12] 王建军, 许党朋, 林宏奂, 张锐, 邓颖, 李明中, 周寿桓. 基于时分复用技术的甚多束光脉冲产生系统.  , 2010, 59(12): 8725-8732. doi: 10.7498/aps.59.8725
    [13] 马文文, 李曙光, 尹国冰, 冯荣普, 付博. 反常色散锥形微结构光纤中高效率脉冲压缩研究.  , 2010, 59(7): 4720-4725. doi: 10.7498/aps.59.4720
    [14] 刘 军, 李小芳, 陈晓伟, 姜永亮, 李儒新, 徐至展. 1 kHz-0.1 TW高效率钛宝石激光放大器.  , 2007, 56(3): 1375-1378. doi: 10.7498/aps.56.1375
    [15] 令维军, 王兆华, 王 鹏, 贾玉磊, 田金荣, 魏志义. 双向抽运钛宝石的高效率多通脉冲主放大研究.  , 2005, 54(3): 1208-1212. doi: 10.7498/aps.54.1208
    [16] 姚 远, 石 寅. 射频能量AC/DC电荷泵的MOS实现研究.  , 2005, 54(5): 2424-2428. doi: 10.7498/aps.54.2424
    [17] 刘红军, 陈国夫, 赵卫, 王屹山. 高质量高效率高稳定性参量放大光产生的研究.  , 2004, 53(1): 105-113. doi: 10.7498/aps.53.105
    [18] 刘亮, 陈洪新, 王育竹. 高效率激光冷却原子束.  , 1993, 42(11): 1762-1765. doi: 10.7498/aps.42.1762
    [19] 陈建文, 傅淑芬, 刘妙宏. 高功率、高效率放电激励XeBr激光器.  , 1980, 29(6): 799-802. doi: 10.7498/aps.29.799
    [20] 吴存恺, 范俊颖, 王志英. 高效率受激喇曼散射源.  , 1980, 29(5): 588-593. doi: 10.7498/aps.29.588
计量
  • 文章访问数:  613
  • PDF下载量:  33
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-06-05
  • 修回日期:  2024-08-03
  • 上网日期:  2024-08-29
  • 刊出日期:  2024-09-20

/

返回文章
返回
Baidu
map