搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于矩阵乘积压缩态的动态可扩展秘密共享方案

赖红 万林春

引用本文:
Citation:

基于矩阵乘积压缩态的动态可扩展秘密共享方案

赖红, 万林春

Dynamic and scalable secret sharing schemes based on matrix product compressed states

Lai Hong, Wan Lin-Chun
cstr: 32037.14.aps.73.20240191
PDF
HTML
导出引用
  • 目前, 基于纠缠态的量子秘密共享(quantum secret sharing, QSS)方案未充分利用纠缠态的概率振幅潜力. 然而, 纠缠态的概率振幅是量子信息学的一个关键特性, 在量子计算和量子通信等领域有着广泛的应用潜力. 值得注意的是, 纠缠态可以通过矩阵乘积态(matrix product state, MPS)有效表达. 利用MPS对纠缠态进行表征, 能够准确地揭示与概率振幅相关的纠缠特性. 本研究证明利用MPS表征纠缠态, 可以将一个W态压缩为一个单光子和一个矩阵, 展示一种新的技术路径. 此外, 本研究还提出MPS与秘密共享方案之间的创新互操作性, 即通过压缩允许量子份额与共享的量子态之间形成非一对一的映射关系. 这种方法可能提供一种更高效的方式来实现量子信息的编码和传输, 对于量子秘密共享尤为重要. 同时, 我们提出的QSS方案具有动态特性, 能够根据需要轻松地添加或移除参与者, 以更好地适应参与者需求的变化, 并在实际应用场景中展现出更高的实用性和适应性. 本文的方案能够在保持高效纠缠利用的同时, 满足系统的多元需求, 包括但不限于通信安全性、数据传输率和系统的可扩展性.
    Currently, quantum secret sharing (QSS) schemes based on entangled states have not yet fully utilized the potential of the probability amplitude of entangled states. However, the probability amplitude is a key characteristic of quantum information science and possesses significant application prospects in the fields of quantum computing and quantum communication. It is worth noting that entangled states can be effectively represented by matrix product states (MPSs). The representation of entangled states using MPS can precisely reveal the entanglement characteristics closely related to the probability amplitude.This study first focuses on the representation of the W state by using MPS, an approach that allows us to determine the key conditions for W state to achieve quantum advantage in QSS. Subsequently, this research demonstrates that by representing entangled states with MPS, a W state can be compressed into a single photon state and a simplified matrix form, presenting an innovative technical path.Moreover, one of the most attractive features of our proposed QSS scheme is its ability to compress multiple different quantum states (represented by photons) into a unified state represented by a single photon. This characteristic endows our scheme with scalability and flexibility, meaning that the group of participants can be easily expanded or reduced according to their specific needs. The addition of new participants is managed by Alice, who is responsible for the distribution of quantum state shares. On the other hand, when a participant leaves the group, their old quantum state share can be simply ignored in the process of recovering the secret's quantum state, thereby simplifying the management process.Through this strategy, we can not only make effective use of entangled resources but also meet the various requirements of the system, including but not limited to communication security, data transfer rates, and system scalability. This research provides new perspectives and possibilities for the field of quantum information science and may have a significant influence on the development of the field.
      通信作者: 赖红, hlai@swu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 61702427, 62301454)、重庆市自然科学基金(批准号: CSTB2022NSCQ-MSX0749, CSTB2023NSCQ-MSX0739)和西南大学2022年校级教改项目(批准号: 2022JY086) 资助的课题.
      Corresponding author: Lai Hong, hlai@swu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61702427, 62301454), the Natural Science Foundation of Chongqing, China (Grant Nos. CSTB2022NSCQ-MSX0749, CSTB2023NSCQ-MSX0739), and the Southwest University’s 2022School-Level Teaching Reform Program, China (Grant No. 2022JY086).
    [1]

    Hillery M, Bužek V, Berthiaume A 1999 Phys. Rev. A 59 1829Google Scholar

    [2]

    Greenberger D M, Horne M A, Zeilinger A 1989 Bell's Theorem, Quantum Theory and Conceptions of the Universe (Dordrecht: Springer) pp69–72

    [3]

    Tittel W, Zbinden H, Gisin N 2001 Phys. Rev. A 63 042301Google Scholar

    [4]

    Xiao L, Long G L, Deng F G, Pan J W 2004 Phys. Rev. A 69 052307Google Scholar

    [5]

    Hsu J L, Chong S K, Hwang T, et al. 2013 Quantum Inf. Process. 12 331Google Scholar

    [6]

    Singh S K, Srikanth R 2005 Phys. Rev. A 71 012328Google Scholar

    [7]

    Markham D, Sanders B C 2008 Phys. Rev. A 78 042309Google Scholar

    [8]

    Bagherinezhad S, Karimipour V 2003 Phys. Rev. A 67 044302Google Scholar

    [9]

    Gaertner S, Kurtsiefer C, Bourennane M, Weinfurter H 2007 Phys. Rev. Lett. 98 020503Google Scholar

    [10]

    Bell B A, Markham D, Herrera-Martí D A, Marin A, Wadsworth W J, Rarity J G, Tame M S 2014 Nat. Commun. 5 5480Google Scholar

    [11]

    Ampatzis M, Andronikos T 2022 Symmetry 14 1692Google Scholar

    [12]

    Lai H, Pieprzyk J, Pan L 2022 Phys. Rev. A 106 052403Google Scholar

    [13]

    Shen A, Cao X Y, Wang Y, Fu Y, Gu J, Liu W B, Weng C X, Yin H L, Chen Z B 2023 Sci. China Phys. Mech. Astron. 66 260311Google Scholar

    [14]

    Singh P, Chakrabarty I 2023 arXiv: 2305.06062 [quant-ph]

    [15]

    Song X, Li C 2023 J. Electron. Inform. Technol. 46 1109Google Scholar

    [16]

    Liu L L, Tsai C W, Hwang T 2012 Int. J. Theor. Phys. 51 2291Google Scholar

    [17]

    Tsai C W, Hwang T 2010 Opt. Commun. 283 4397Google Scholar

    [18]

    Li C L, Fu Y, Liu W B, Xie Y M, Li B H, Zhou M G, Yin H L, Chen Z B 2023 Phys. Rev. Res. 5 033077Google Scholar

    [19]

    Singh P, Chakrabarty I 2024 Phys. Rev. A 109 032406Google Scholar

    [20]

    Ma R H, Gao F, Cai B B, Lin S 2024 Adv. Quantum Technol. 7 2300273Google Scholar

    [21]

    Dür W, Vidal G, Cirac J I 2000 Phys. Rev. A 62 062314Google Scholar

    [22]

    Joo J, Park Y J, Lee J, Jang J, Kim I 2005 J. Korean Phys. Soc. 46 763

    [23]

    Pérez García D, Verstraete F, Wolf M M, Cirac J I 2007 Quantum Inf. Comput. 7 401

    [24]

    Sutherland B 1971 J. Math. Phys. 12 246Google Scholar

    [25]

    Biamonte J 2020 arXiv: 1912.10049v2 [quant-ph]

    [26]

    Schollwöck U 2011 Ann. Phys. 326 96Google Scholar

    [27]

    Eisert J 2013 arXiv: 1308.3318 [quant-ph]

    [28]

    Islam R, Ma R, Preiss P M, Tai M E, Lukin A, Rispoli M, Greiner M 2015 Nature 528 77Google Scholar

    [29]

    Lai H, Pieprzyk J, Pan L, Li Y 2023 Quantum Inf. Process. 22 235Google Scholar

    [30]

    Hughes R J, Nordholt J E, Derkacs D, Peterson C G 2002 New J. Phys. 4 43Google Scholar

    [31]

    Jennewein T, Simon C, Weihs G, Weinfurter H, Zeilinger A 2000 Phys. Rev. Lett. 84 4729Google Scholar

    [32]

    Stucki D, Gisin N, Guinnard O, Ribordy G, Zbinden H 2002 New J. Phys. 4 41Google Scholar

    [33]

    Beveratos A, Brouri R, Gacoin T, Villing A, Poizat J P, Grangier P 2002 Phys. Rev. Lett. 89 187901Google Scholar

  • 图 1  压缩量子态秘密共享示意图, 即一个特定的MPS被分解为多个部分, 每一部分都被压缩成一个单光子和一个矩阵, 并分别发送给各个参与者, 参与者在接收到这些部分后, 可以将其解压缩回原始的特定矩阵乘积态

    Fig. 1.  Diagram of compressed quantum state secret sharing: A specific MPS is divided into several parts, each of which is compressed into a single photon and a matrix, and then sent to individual participants. Upon receiving these parts, participants can decompress them back into the original matrix product state.

    表 1  本文协议与文献[1, 15, 16]中的协议比较, 其中${N_{{\text{NP}}}}$表示量子参与者的数量

    Table 1.  Comparison of our scheme with the schemes in Ref. [1, 15, 16], where ${N_{{\text{NP}}}}$ denotes the number of photons for quantum participants.

    协议[1]协议[15]协议[16]本文协议
    分享的秘密GHZ态W经典序列W态的MPS
    秘密份额压缩
    纠缠系数的使用
    动态性
    可扩展性
    非唯一映射性
    参与者集合的伸缩性
    NNPQnnn1
    秘密份额重复利用
    分享秘密更新
    下载: 导出CSV
    Baidu
  • [1]

    Hillery M, Bužek V, Berthiaume A 1999 Phys. Rev. A 59 1829Google Scholar

    [2]

    Greenberger D M, Horne M A, Zeilinger A 1989 Bell's Theorem, Quantum Theory and Conceptions of the Universe (Dordrecht: Springer) pp69–72

    [3]

    Tittel W, Zbinden H, Gisin N 2001 Phys. Rev. A 63 042301Google Scholar

    [4]

    Xiao L, Long G L, Deng F G, Pan J W 2004 Phys. Rev. A 69 052307Google Scholar

    [5]

    Hsu J L, Chong S K, Hwang T, et al. 2013 Quantum Inf. Process. 12 331Google Scholar

    [6]

    Singh S K, Srikanth R 2005 Phys. Rev. A 71 012328Google Scholar

    [7]

    Markham D, Sanders B C 2008 Phys. Rev. A 78 042309Google Scholar

    [8]

    Bagherinezhad S, Karimipour V 2003 Phys. Rev. A 67 044302Google Scholar

    [9]

    Gaertner S, Kurtsiefer C, Bourennane M, Weinfurter H 2007 Phys. Rev. Lett. 98 020503Google Scholar

    [10]

    Bell B A, Markham D, Herrera-Martí D A, Marin A, Wadsworth W J, Rarity J G, Tame M S 2014 Nat. Commun. 5 5480Google Scholar

    [11]

    Ampatzis M, Andronikos T 2022 Symmetry 14 1692Google Scholar

    [12]

    Lai H, Pieprzyk J, Pan L 2022 Phys. Rev. A 106 052403Google Scholar

    [13]

    Shen A, Cao X Y, Wang Y, Fu Y, Gu J, Liu W B, Weng C X, Yin H L, Chen Z B 2023 Sci. China Phys. Mech. Astron. 66 260311Google Scholar

    [14]

    Singh P, Chakrabarty I 2023 arXiv: 2305.06062 [quant-ph]

    [15]

    Song X, Li C 2023 J. Electron. Inform. Technol. 46 1109Google Scholar

    [16]

    Liu L L, Tsai C W, Hwang T 2012 Int. J. Theor. Phys. 51 2291Google Scholar

    [17]

    Tsai C W, Hwang T 2010 Opt. Commun. 283 4397Google Scholar

    [18]

    Li C L, Fu Y, Liu W B, Xie Y M, Li B H, Zhou M G, Yin H L, Chen Z B 2023 Phys. Rev. Res. 5 033077Google Scholar

    [19]

    Singh P, Chakrabarty I 2024 Phys. Rev. A 109 032406Google Scholar

    [20]

    Ma R H, Gao F, Cai B B, Lin S 2024 Adv. Quantum Technol. 7 2300273Google Scholar

    [21]

    Dür W, Vidal G, Cirac J I 2000 Phys. Rev. A 62 062314Google Scholar

    [22]

    Joo J, Park Y J, Lee J, Jang J, Kim I 2005 J. Korean Phys. Soc. 46 763

    [23]

    Pérez García D, Verstraete F, Wolf M M, Cirac J I 2007 Quantum Inf. Comput. 7 401

    [24]

    Sutherland B 1971 J. Math. Phys. 12 246Google Scholar

    [25]

    Biamonte J 2020 arXiv: 1912.10049v2 [quant-ph]

    [26]

    Schollwöck U 2011 Ann. Phys. 326 96Google Scholar

    [27]

    Eisert J 2013 arXiv: 1308.3318 [quant-ph]

    [28]

    Islam R, Ma R, Preiss P M, Tai M E, Lukin A, Rispoli M, Greiner M 2015 Nature 528 77Google Scholar

    [29]

    Lai H, Pieprzyk J, Pan L, Li Y 2023 Quantum Inf. Process. 22 235Google Scholar

    [30]

    Hughes R J, Nordholt J E, Derkacs D, Peterson C G 2002 New J. Phys. 4 43Google Scholar

    [31]

    Jennewein T, Simon C, Weihs G, Weinfurter H, Zeilinger A 2000 Phys. Rev. Lett. 84 4729Google Scholar

    [32]

    Stucki D, Gisin N, Guinnard O, Ribordy G, Zbinden H 2002 New J. Phys. 4 41Google Scholar

    [33]

    Beveratos A, Brouri R, Gacoin T, Villing A, Poizat J P, Grangier P 2002 Phys. Rev. Lett. 89 187901Google Scholar

  • [1] 赵豪, 冯晋霞, 孙婧可, 李渊骥, 张宽收. 连续变量Einstein-Podolsky-Rosen纠缠态光场在光纤信道中分发时纠缠的鲁棒性.  , 2022, 71(9): 094202. doi: 10.7498/aps.71.20212380
    [2] 王秀娟, 李生好. 基于U(1)对称的无限矩阵乘积态张量网络算法提取Luttinger液体参数K .  , 2019, 68(16): 160201. doi: 10.7498/aps.68.20190379
    [3] 冷春玲, 张英俏, 计新. 利用破坏对称性的超导人造原子制备型四比特纠缠态.  , 2015, 64(18): 184207. doi: 10.7498/aps.64.184207
    [4] 王童, 童创明, 李西敏, 李昌泽. 扩展性微动目标回波模拟与特征参数提取研究.  , 2015, 64(21): 210301. doi: 10.7498/aps.64.210301
    [5] 刘世右, 郑凯敏, 贾芳, 胡利云, 谢芳森. 单-双模组合压缩热态的纠缠性质及在量子隐形传态中的应用.  , 2014, 63(14): 140302. doi: 10.7498/aps.63.140302
    [6] 王晓芹, 逯怀新, 赵加强. 广义GHZ态的纠缠与非定域性.  , 2011, 60(11): 110301. doi: 10.7498/aps.60.110301
    [7] 陈星, 夏云杰. 双模压缩真空态和纠缠相干态的一维势垒散射.  , 2010, 59(1): 80-86. doi: 10.7498/aps.59.80
    [8] 尉伟峰. 选择理论生成幂律的扩展性研究.  , 2009, 58(10): 6696-6702. doi: 10.7498/aps.58.6696
    [9] 叶晨光, 张 靖. 利用PPKTP晶体产生真空压缩态及其Wigner准概率分布函数的量子重构.  , 2008, 57(11): 6962-6967. doi: 10.7498/aps.57.6962
    [10] 孟祥国, 王继锁. 有限维Hilbert空间Roy型奇偶非线性相干态的振幅平方压缩.  , 2006, 55(4): 1774-1780. doi: 10.7498/aps.55.1774
    [11] 李 莹, 罗 玉, 潘 庆, 彭堃墀. 用外腔谐振倍频产生明亮绿光振幅压缩态光场.  , 2006, 55(10): 5030-5035. doi: 10.7498/aps.55.5030
    [12] 刘传龙, 郑亦庄. 纠缠相干态的量子隐形传态.  , 2006, 55(12): 6222-6228. doi: 10.7498/aps.55.6222
    [13] 杨宇光, 温巧燕, 朱甫臣. 一种新的利用不可扩展乘积基和严格纠缠基的量子密钥分配方案.  , 2005, 54(12): 5549-5553. doi: 10.7498/aps.54.5549
    [14] 黄永畅, 刘 敏. 一般WGHZ态和它的退纠缠与概率隐形传态.  , 2005, 54(10): 4517-4523. doi: 10.7498/aps.54.4517
    [15] 邵常贵, 肖俊华, 邵亮, 邵丹, 陈贻汉, 潘贵军. 扩展的纽结量子引力态.  , 2002, 51(7): 1467-1474. doi: 10.7498/aps.51.1467
    [16] 石名俊, 杜江峰, 朱栋培. 量子纯态的纠缠度.  , 2000, 49(5): 825-829. doi: 10.7498/aps.49.825
    [17] 石名俊, 杜江峰, 朱栋培, 阮图南. 混合纠缠态的几何描述.  , 2000, 49(10): 1912-1918. doi: 10.7498/aps.49.1912
    [18] 田 旭, 黄湘友. 耦合压缩Landau态.  , 1999, 48(8): 1399-1404. doi: 10.7498/aps.48.1399
    [19] 吴兴龙. 压缩粒子数态中振幅k次幂的压缩效应.  , 1994, 43(9): 1433-1440. doi: 10.7498/aps.43.1433
    [20] 夏云杰, 李洪珍, 郭光灿. 奇偶相干态的高阶压缩及其准概率分布函数.  , 1991, 40(3): 386-392. doi: 10.7498/aps.40.386
计量
  • 文章访问数:  413
  • PDF下载量:  17
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-01-29
  • 修回日期:  2024-07-21
  • 上网日期:  2024-08-19
  • 刊出日期:  2024-09-20

/

返回文章
返回
Baidu
map