搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

GeV重离子束辐照LiF引起的晶体内部结构改变

陈宇鹏 史路林 王瑜玉 程锐 杨杰 陈良文 范伟丽 董俊煜

引用本文:
Citation:

GeV重离子束辐照LiF引起的晶体内部结构改变

陈宇鹏, 史路林, 王瑜玉, 程锐, 杨杰, 陈良文, 范伟丽, 董俊煜

Internal structural changes in crystals induced by GeV heavy ion beam irradiation of LiF

Chen Yu-Peng, Shi Lu-Lin, Wang Yu-Yu, Cheng Rui, Yang Jie, Chen Liang-Wen, Fan Wei-Li, Dong Jun-Yu
PDF
HTML
导出引用
  • 高能强流重离子束入射到固体物质中, 沿飞行路径的离子能量沉积密度将改变宏观靶物质的温度和压强等, 并可能在高压高密条件下产生新的材料缺陷. 本文利用兰州重离子加速器装置HIRFL-CSR引出的能量为264 MeV/u 的Xe36+离子束, 入射到LiF晶体靶物质中, 在线测量了LiF的发射光谱, 观测到沿离子路径的晶体颜色变化. 通过解离方法取得了不同位置处的X射线衍射(X-ray Diffraction)与X射线光电子能谱结果, 显示在Xe离子的布拉格峰区域出现了LiF3 (LiF+F2)结构相, 讨论了新的结构缺陷的产生与重离子束能量沉积密度间可能的相关性. 这为离子束驱动的高能量密度物理的能量沉积过程提供了一定参考.
    When an incident high-energy heavy ion beam enters into solid material, the energy deposition density along the ion flight path can change the temperature and pressure of macroscopic target, and new material defects can be created under the high-pressure and high-density conditions. To accurately control the extreme state in material generated by heavy ion beam, it is necessary to conduct in-depth research on the energy deposition density of ions and ascertain the new potential defects in matter. Reported in this work is the new experiment conducted on the HIRFL-CSR at Lanzhou, with the extracted 264 MeV/u Xe36+ ion beams irradiating an LiF crystal target. The emission spectrum of the LiF is measured in-situ. Moreover, the crystal color is observed to vary along the ion path, and X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) are used to observe the potential new phases at different positions of crystal through the target dissociation method.It is apparent that in No. 3-front a new phase around 52.6° is found in XRD result, which is believed to be LiF3 (LiF+F2) structural phase and appears in the Bragg peak region of Xe ions in LiF. Furthermore, to verify this result, a similar experiment is done by using a 430 MeV/u 84Kr26+ ion beam, and the stacked layered LiF target is analyzed after the irradiation. The XPS result shows more complex defects aggregating in the Bragg peak region of Kr ions in LiF at room temperature. In previous study, such complex defects were all created under high temperature conditions. We find that these complex defects can be produced around the Bragg peak region of ions in LiF at room temperature, resulting in a temporally high temperature and high pressure condition. This paper can provide some experimental evidences and references for the target material modification in heavy ion beam driven high-energy density physics research.
      通信作者: 王瑜玉, wangyuyu@impcas.ac.cn
    • 基金项目: 国家重点研发计划(批准号: 2022YFA1602500)、国家自然科学基金国际 (地区) 合作与交流项目(批准号: 12120101005)和国家自然科学基金(批准号: 12205247)资助的课题.
      Corresponding author: Wang Yu-Yu, wangyuyu@impcas.ac.cn
    • Funds: Project supported by the National Key Research and Development Program (Grant No. 2022YFA1602500), the National Natural Science Foundation of China for International (Regional) Cooperation and Exchange (Grant No. 12120101005), and the National Natural Science Foundation of China (Grant No. 12205247).
    [1]

    Kang W, Du Y, Cao S, et al. 2020 Sci. Sin. Phys. Mech. Astron. 50 112004Google Scholar

    [2]

    Yang J, Chen Y, Shen G, et al. 2020 Sci. Sin. Phys. Mech. Astron. 50 112011Google Scholar

    [3]

    Matsubayashi M, Faenov A, Pikuz T, et al. 2011 Nucl. Instrum. Methods Phys. Res. Sect. Accel. Spectrometers Detect. Assoc. Equip. 651 90Google Scholar

    [4]

    Perez A, Davenas J, Dupuy C H S 1976 Nucl. Instrum. Methods 132 219Google Scholar

    [5]

    Wangts Z G, Dufourtt C, Paumiertt E, Toulemoude M 1994 J. Phys.: Condens. Matter 6 6733Google Scholar

    [6]

    Perez A, Balanzat E, Dural J 1990 Phys. Rev. B 41 3943Google Scholar

    [7]

    Trautmann C, Toulemonde M, Schwartz K, et al. 2000 Nucl. Instrum. Methods Phys. Res. Sec. B 164–165 365Google Scholar

    [8]

    El-Said A S, Cranney M, Ishikawa N, et al. 2004 Nucl. Instrum. Methods Phys. Res. Sect. B 218 492Google Scholar

    [9]

    Müller A, Neumann R, Schwartz K, Trautmann C 1998 Nucl. Instrum. Methods Phys. Res. Sect. B 146 393Google Scholar

    [10]

    Toulemonde M, Assmann W, Trautmann C, Grüner F 2002 Phys. Rev. Lett. 88 057602Google Scholar

    [11]

    Trautmann C, Schwartz K, Geiss O 1998 J. Appl. Phys. 83 3560Google Scholar

    [12]

    Schwartz K, Trautmann C, Steckenreiter T, Geiß O, Krämer M 1998 Phys. Rev. B 58 11232Google Scholar

    [13]

    Davidson A T, Schwartz K, Comins J D, Kozakiewicz A G, Toulemonde M, Trautmann C 2002 Phys. Rev. B 66 214102Google Scholar

    [14]

    Schwartz K, Trautmann C, El-Said A S, Neumann R, Toulemonde M, Knolle W 2004 Phys. Rev. B 70 184104Google Scholar

    [15]

    Pikuz T, Faenov A, Fukuda Y, et al. 2012 Opt. Express 20 3424Google Scholar

    [16]

    Lushchik A, Lushchik Ch, Schwartz K, et al. 2007 Phys. Rev. B 76 054114Google Scholar

    [17]

    Thevenard P, Guiraud G, Dupuy C H S, Delaunay B 1977 Radiat. Eff. 32 83Google Scholar

    [18]

    Knutsont D, Bray P J 1966 J. Phys. Chem. Solids. 27 147-161.Google Scholar

    [19]

    Dauletbekova A, Schwartz K, Sorokin M V, et al. 2015 Nucl. Instrum. Methods Phys. Res. Sect. B 359 53Google Scholar

    [20]

    Ditter M, Becher M, Orth S, et al. 2019 Nucl. Instrum. Methods Phys. Res. Sect. B 441 70Google Scholar

  • 图 1  (a)基于HIRFL装置的重离子束打靶实验装置示意图; (b)靶区内各装置位置示意图

    Fig. 1.  (a) Schematic diagram of heavy ion beam targeting experimental setup based on HIRFL; (b) diagram of the positions of devices within the target area.

    图 2  260 MeV/u的Xe36+ 离子轰击LiF晶体的在线发光光谱结果 (a)在线发光光谱的峰位分布; (b)不同辐射剂量下的光谱强度演化(其中p代表束流脉冲发次)

    Fig. 2.  Luminescence spectrum of 260 MeV/u Xe36+ ion bombardment on LiF crystals: (a) The peak position distribution of the luminescence spectrum; (b) the spectral intensity evolution at different radiation doses (where p represents the number of beam pulses).

    图 3  Xe36+辐照后的LiF样品图以及沿束流方向解离示意图, 图中箭头指向面即图4(a)相应的测试面(不代表实际测试位置, 测试位置位于每个切面中心变色处)

    Fig. 3.  Diagram of LiF sample after irradiation with Xe36+ and schematic diagram of dissociation along the beam direction. The arrow in the figure points to the corresponding testing surface in Fig. 4(a) (which does not represent the actual testing position, and the testing position is located at the discoloration point at the center of each section).

    图 4  (a) Xe36+离子束轰击后LiF晶体各解离面的XRD测试结果; (b)区域3的XRD对比图

    Fig. 4.  (a) XRD test results of various dissociation surfaces of LiF crystals after Xe36+ ion beam bombardment; (b) XRD comparison diagram in region 3.

    图 5  XPS分析结果 (a)前7个面的测量结果; (b)最后一个面的测量结果

    Fig. 5.  XPS analysis results: (a) The measurement results of the first seven faces; (b) the measurement results of the last face.

    Baidu
  • [1]

    Kang W, Du Y, Cao S, et al. 2020 Sci. Sin. Phys. Mech. Astron. 50 112004Google Scholar

    [2]

    Yang J, Chen Y, Shen G, et al. 2020 Sci. Sin. Phys. Mech. Astron. 50 112011Google Scholar

    [3]

    Matsubayashi M, Faenov A, Pikuz T, et al. 2011 Nucl. Instrum. Methods Phys. Res. Sect. Accel. Spectrometers Detect. Assoc. Equip. 651 90Google Scholar

    [4]

    Perez A, Davenas J, Dupuy C H S 1976 Nucl. Instrum. Methods 132 219Google Scholar

    [5]

    Wangts Z G, Dufourtt C, Paumiertt E, Toulemoude M 1994 J. Phys.: Condens. Matter 6 6733Google Scholar

    [6]

    Perez A, Balanzat E, Dural J 1990 Phys. Rev. B 41 3943Google Scholar

    [7]

    Trautmann C, Toulemonde M, Schwartz K, et al. 2000 Nucl. Instrum. Methods Phys. Res. Sec. B 164–165 365Google Scholar

    [8]

    El-Said A S, Cranney M, Ishikawa N, et al. 2004 Nucl. Instrum. Methods Phys. Res. Sect. B 218 492Google Scholar

    [9]

    Müller A, Neumann R, Schwartz K, Trautmann C 1998 Nucl. Instrum. Methods Phys. Res. Sect. B 146 393Google Scholar

    [10]

    Toulemonde M, Assmann W, Trautmann C, Grüner F 2002 Phys. Rev. Lett. 88 057602Google Scholar

    [11]

    Trautmann C, Schwartz K, Geiss O 1998 J. Appl. Phys. 83 3560Google Scholar

    [12]

    Schwartz K, Trautmann C, Steckenreiter T, Geiß O, Krämer M 1998 Phys. Rev. B 58 11232Google Scholar

    [13]

    Davidson A T, Schwartz K, Comins J D, Kozakiewicz A G, Toulemonde M, Trautmann C 2002 Phys. Rev. B 66 214102Google Scholar

    [14]

    Schwartz K, Trautmann C, El-Said A S, Neumann R, Toulemonde M, Knolle W 2004 Phys. Rev. B 70 184104Google Scholar

    [15]

    Pikuz T, Faenov A, Fukuda Y, et al. 2012 Opt. Express 20 3424Google Scholar

    [16]

    Lushchik A, Lushchik Ch, Schwartz K, et al. 2007 Phys. Rev. B 76 054114Google Scholar

    [17]

    Thevenard P, Guiraud G, Dupuy C H S, Delaunay B 1977 Radiat. Eff. 32 83Google Scholar

    [18]

    Knutsont D, Bray P J 1966 J. Phys. Chem. Solids. 27 147-161.Google Scholar

    [19]

    Dauletbekova A, Schwartz K, Sorokin M V, et al. 2015 Nucl. Instrum. Methods Phys. Res. Sect. B 359 53Google Scholar

    [20]

    Ditter M, Becher M, Orth S, et al. 2019 Nucl. Instrum. Methods Phys. Res. Sect. B 441 70Google Scholar

  • [1] 卓俊添, 林铭浩, 张齐艳, 黄双武. 热塑性聚酰亚胺/氧化铝三明治结构柔性电介质薄膜的设计制备及其高温介电储能性能.  , 2024, 73(17): 177701. doi: 10.7498/aps.73.20240838
    [2] 董久锋, 邓星磊, 牛玉娟, 潘子钊, 汪宏. 面向高温介电储能应用的聚合物基电介质材料研究进展.  , 2020, 69(21): 217701. doi: 10.7498/aps.69.20201006
    [3] 黄宏琪, 赵楠, 陈瑰, 廖雷, 刘自军, 彭景刚, 戴能利. γ射线辐照对掺Yb光纤材料性能的影响.  , 2014, 63(20): 200201. doi: 10.7498/aps.63.200201
    [4] 钟勉, 杨亮, 任玮, 向霞, 刘翔, 练友运, 徐世珍, 郭德成, 郑万国, 袁晓东. 高功率脉冲电子束辐照SiO2的光学和激光损伤性能.  , 2014, 63(24): 246103. doi: 10.7498/aps.63.246103
    [5] 马晶, 车驰, 于思源, 谭丽英, 周彦平, 王健. 光纤布拉格光栅辐射损伤及其对光谱特性的影响.  , 2012, 61(6): 064201. doi: 10.7498/aps.61.064201
    [6] 毕学松, 朱亮, 杨富龙. 丝电爆过程的电流导入机理.  , 2012, 61(7): 078105. doi: 10.7498/aps.61.078105
    [7] 濮春英, 刘廷禹, 刘长捷, 白晓明, 李春萍, 佘辉. 碘化铯晶体中电子型色心的电子结构研究.  , 2010, 59(1): 453-457. doi: 10.7498/aps.59.453
    [8] 许兴胜, 熊志刚, 金爱子, 陈弘达, 张道中. 聚焦离子束研制半导体材料光子晶体.  , 2007, 56(2): 916-921. doi: 10.7498/aps.56.916
    [9] 邹 军, 黄涛华, 王 军, 张连翰, 周圣明, 徐 军. Ti: LiAlO2新型晶体的结构分析.  , 2006, 55(7): 3536-3539. doi: 10.7498/aps.55.3536
    [10] 黄桂芹, 刘 楣, 陈凌孚. KMgF3晶体的色心和自陷态激子研究.  , 2005, 54(4): 1702-1706. doi: 10.7498/aps.54.1702
    [11] 刘廷禹, 张启仁, 庄松林. PbWO4晶体中铅空位相关的色心模型.  , 2005, 54(2): 863-867. doi: 10.7498/aps.54.863
    [12] 白 龙, 翁甲强, 方锦清, 罗晓曙. 强流离子束离子径向密度分布的模拟研究.  , 2004, 53(12): 4126-4130. doi: 10.7498/aps.53.4126
    [13] 曾雄辉, 赵广军, 徐 军. 温度梯度法生长的Ce: YAlOZr3高温闪烁晶体的光谱分析.  , 2004, 53(6): 1935-1939. doi: 10.7498/aps.53.1935
    [14] 高祀建, 欧阳世翕. γ射线辐照对电熔石英玻璃介电性质的影响.  , 2003, 52(5): 1292-1296. doi: 10.7498/aps.52.1292
    [15] 李 玲, 李伯臧. 双动边界一维空腔中的能量密度.  , 2003, 52(11): 2762-2767. doi: 10.7498/aps.52.2762
    [16] 冯锡淇, 林奇生, 满振勇, 廖晶莹, 胡关钦. 钨酸铅晶体的本征色心和辐照诱导色心.  , 2002, 51(2): 315-321. doi: 10.7498/aps.51.315
    [17] 廖梅勇, 秦复光, 柴春林, 刘志凯, 杨少延, 姚振钰, 王占国. 离子能量和沉积温度对离子束沉积碳膜表面形貌的影响.  , 2001, 50(7): 1324-1328. doi: 10.7498/aps.50.1324
    [18] 唐立家, 蔡希洁, 林尊琪. “神光Ⅱ”主放大器中的波形控制.  , 2001, 50(6): 1075-1079. doi: 10.7498/aps.50.1075
    [19] 田人和, 张荟星. 强流重离子束在轴对称电场中的温度和能量展宽.  , 1992, 41(3): 408-412. doi: 10.7498/aps.41.408
    [20] 郑立行, 阮永丰, 郭绍章, 万良风, 李浩. LiF晶体F3+色心的实验研究.  , 1986, 35(9): 1148-1157. doi: 10.7498/aps.35.1148
计量
  • 文章访问数:  1402
  • PDF下载量:  38
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-05-22
  • 修回日期:  2024-06-20
  • 上网日期:  2024-06-28
  • 刊出日期:  2024-08-05

/

返回文章
返回
Baidu
map