搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

超冷离子源研究进展

周文长 方锋 罗长杰 牟宏进 卢亮 邹丽平 程锐 杨杰 杜广华

引用本文:
Citation:

超冷离子源研究进展

周文长, 方锋, 罗长杰, 牟宏进, 卢亮, 邹丽平, 程锐, 杨杰, 杜广华

Research progress of ultracold ion source

Zhou Wen-Chang, Fang Feng, Luo Chang-Jie, Mou Hong-Jin, Lu Liang, Zou Li-Ping, Cheng Rui, Yang Jie, Du Guang-Hua
PDF
HTML
导出引用
  • 纳米离子束是制备束斑直径在微纳米尺度荷能离子束的先进技术, 主要应用于高分辨和高精度的离子束分析、离子束加工和离子束材料改性研究, 在材料分析、微纳加工、微电子器件制造和量子计算等方面发挥着重要的作用. 高品质离子源作为纳米离子束装置的关键部件, 其性能指标直接决定着该装置的技术水平. 然而, 目前常用的传统离子源存在离子种类单一、能散高和结构复杂等问题, 已经难以满足新应用场景下的多离子种类和高分辨的要求, 突显出研发新型离子源的重要性和迫切性. 随着激光冷却技术的日臻成熟, 基于光电离冷原子和激光冷却离子技术可以获得温度在mK甚至μK量级的超冷离子, 其低温和易于操控等典型特征极大地促进了超冷离子源的发展. 超冷离子具有极小的横向速度发散, 可以显著提升离子源的亮度和发射度等品质参数, 为纳米离子束技术的革新带来了巨大的发展机遇. 因此, 超冷离子源的研究对于实现更高亮度、更小尺寸、更低能散、更多样化离子种类以及结构更简化的高品质离子源具有重要的意义. 本文综述了近年来超冷离子源的研究进展, 从制备原理、产生方式以及典型应用等方面介绍了磁光阱离子源、冷原子束离子源和超冷单离子源在基础研究和应用技术研发方面取得的重要成果, 并对超冷离子源的未来发展和应用前景进行了展望.
    Nanobeam is an advanced technology for preparing charged ion beams with spot diameters on a nanometer scale, and mainly used for high-resolution and high-precision ion beam analysis, ion beam fabrication and ion beam material modification research. The nanobeam devices play an important role in realizing material analysis, micro/nano fabrication, microelectronic device manufacturing and quantum computing. The high-quality ion source is one of the key components of nanobeam device, the performance of which directly affects the resolution and precision of the nanobeam system. However, the traditional ion source used in this system is limited to available ionic species, large energy spread and complex structure. These issues hinder their ability to meet emerging application scenarios that require multi-ion types and high resolution. This emphasizes the importance of creating newion sources as soon as possible.With the development of laser cooling technology, ultracold ions with temperatures in the range of mK or even μK can be obtained based on photoionization of cold atoms and laser cooling of ions. The typical characteristics of low temperature and easy operation greatly promote the emergence of ultracold ion sources. The ultracold ions exhibit extremely small transverse velocity divergence, which can significantly enhance the brightness and emittance quality parameters of the ion source, bringing great opportunities for innovating nano-ion beam technology. Therefore, the research on ultracold ion sources is of great significance for achieving high-quality ion sources with higher brightness, smaller size, lower energy dispersion, more diverse ion species, and simplified structure. Here, we introduce the important achievements in basic research and application technology development of magneto-optical trap ion sources, cold atomic beam ion sources, and ultracold single ion sources from the aspects of preparation principles, generation methods, and typical applications, and review the recent research progress of ultracold ion sources. Finally, we provide an outlook on the future development and application prospects of ultracold ion sources.
      通信作者: 杨杰, jie.yang@impcas.ac.cn ; 杜广华, gh_du@impcas.ac.cn
    • 基金项目: 国家自然科学基金(批准号: 11975283)、国家重点基础研究发展计划(批准号: 2022YFA1602500)和国家自然科学基金国际(地区) 合作与交流项目(批准号: 12120101005)资助的课题.
      Corresponding author: Yang Jie, jie.yang@impcas.ac.cn ; Du Guang-Hua, gh_du@impcas.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11975283), the National Basic Research Program of China (Grant No. 2022YFA1602500), and the Funds for International Cooperation and Exchange of the National Natural Science Foundation of China (Grant No. 12120101005).
    [1]

    Hoeflich K, Hobler G, Allen F I, Wirtz T, Rius G, McElwee-White L, Krasheninnikov A V, Schmidt M, Utke I, Klingner N, Osenberg M, Cordoba R, Djurabekova F, Manke I, Moll P, Manoccio M, De Teresa J M, Bischoff L, Michler J, De Castro O, Delobbe A, Dunne P, Dobrovolskiy O V, Frese N, Goelzhaeuser A, Mazarov P, Koelle D, Moeller W, Perez-Murano F, Philipp P, Vollnhals F, Hlawacek G 2023 Appl. Phys. Rev. 10 041311Google Scholar

    [2]

    Manoccio M, Esposito M, Passaseo A, Cuscuna M, Tasco V 2021 Micromachines 12 6Google Scholar

    [3]

    Sloyan K, Melkonyan H, Apostoleris H, Dahlem M S, Chiesa M, Al Ghaferi A 2021 Nanotechnology 32 472004Google Scholar

    [4]

    Li P, Chen S Y, Dai H F, Yang Z M, Chen Z Q, Wang Y S, Chen Y Q, Peng W Q, Shan W B, Duan H G 2021 Nanoscale 13 1529Google Scholar

    [5]

    Lesik M, Spinicelli P, Pezzagna S, Happel P, Jacques V, Salord O, Rasser B, Delobbe A, Sudraud P, Tallaire A, Meijer J, Roch J-F 2013 Physica Status Solidi a-Applications and Materials Science 210 2055Google Scholar

    [6]

    Bradac C, Gao W, Forneris J, Trusheim M E, Aharonovich I 2019 Nat. Commun. 10 5625Google Scholar

    [7]

    Haruyama M, Onoda S, Higuchi T, Kada W, Chiba A, Hirano Y, Teraji T, Igarashi R, Kawai S, Kawarada H, Ishii Y, Fukuda R, Tanii T, Isoya J, Ohshima T, Hanaizumi O 2019 Nat. Commun. 10 2664Google Scholar

    [8]

    Swanson L W, Schwind G A 1978 J. Appl. Phys. 49 5655Google Scholar

    [9]

    Bischoff L, Mazarov P, Bruchhaus L, Gierak J 2016 Appl. Phys. Rev. 3 021101Google Scholar

    [10]

    He S X, Tian R, Wu W, Li W D, Wang D P 2021 IJEM 3 012001Google Scholar

    [11]

    Ward B W, Notte J A, Economou N P 2006 J. Vac. Sci. Technol. B 24 2871Google Scholar

    [12]

    Rahman F H M, McVey S, Farkas L, Notte J A, Tan S, Livengood R H 2012 Scanning 34 129Google Scholar

    [13]

    Smith N S, Notte J A, Steele A V 2014 Mrs Bull. 39 329Google Scholar

    [14]

    Prodan J V, Phillips W D, Metcalf H 1982 Phys. Rev. Lett. 49 1149Google Scholar

    [15]

    Chu S, Hollberg L, Bjorkholm J E, Cable A, Ashkin A 1985 Phys. Rev. Lett. 55 48Google Scholar

    [16]

    Softley T P 2023 P. Roy. Soc. A-Math. Phys. 479 20220806Google Scholar

    [17]

    McClelland J J, Steele A V, Knuffman B, Twedt K A, Schwarzkopf A, Wilson T M 2016 Appl. Phys. Rev. 3 011302Google Scholar

    [18]

    Freinkman B G, Eletskii A V, Zaitsev S I 2003 Jetp Lett. 78 255Google Scholar

    [19]

    van der Geer S B, Reijnders M P, de Loos M J, Vredenbregt E J D, Mutsaers P H A, Luiten O J 2007 J. Appl. Phys. 102 094312Google Scholar

    [20]

    Claessens B J, Reijnders M P, Taban G, Luiten O J, Vredenbregt E J D 2007 Phys. Plasmas 14 093101Google Scholar

    [21]

    Hanssen J L, Hill S B, Orloff J, McClelland J J 2008 Nano Lett. 8 2844Google Scholar

    [22]

    Murphy D, Speirs R W, Sheludko D V, Putkunz C T, McCulloch A J, Sparkes B M, Scholten R E 2014 Nat. Commun. 5 4489Google Scholar

    [23]

    Kime L, Fioretti A, Bruneau Y, Porfido N, Fuso F, Viteau M, Khalili G, Santic N, Gloter A, Rasser B, Sudraud P, Pillet P, Comparat D 2013 Phys. Rev. A 88 33424Google Scholar

    [24]

    Wouters S H W, ten Haaf G, Notermans R P M J W, Debernardi N, Mutsaers P H A, Luiten O J, Vredenbregt E J D 2014 Phys. Rev. A 90 063817Google Scholar

    [25]

    ten Haaf G, Wouters S H W, van der Geer S B, Vredenbregt E J D, Mutsaers P H A 2014 J. Appl. Phys. 116 244301Google Scholar

    [26]

    Knuffman B, Steele A V, McClelland J J 2013 J. Appl. Phys. 114 044303Google Scholar

    [27]

    Schnitzler W, Linke N M, Fickler R, Meijer J, Schmidt-Kaler F, Singer K 2009 Phys. Rev. Lett. 102 070501Google Scholar

    [28]

    Sahin C, Geppert P, Muellers A, Ott H 2017 New J. Phys. 19 123005Google Scholar

    [29]

    Hansch T W, Schawlow A L 1975 Opt. Commun. 13 68Google Scholar

    [30]

    Phillips W D 1998 Rev. Mod. Phys. 70 721Google Scholar

    [31]

    Chu S 1998 Rev. Mod. Phys. 70 685Google Scholar

    [32]

    Cohen-Tannoudji C N 1998 Rev. Mod. Phys. 70 707Google Scholar

    [33]

    王义遒 2007 原子的激光冷却与陷俘(北京: 北京大学出版社)

    Wang Y Q 2007 Laser Cooled and Trapped Atoms (Beijing: Peking University Press

    [34]

    Lett P D, Watts R N, Westbrook C I, Phillips W D, Gould P L, Metcalf H J 1988 Phys. Rev. Lett. 61 169Google Scholar

    [35]

    Reijnders M P, van Kruisbergen P A, Taban G, van der Geer S B, Mutsaers P H A, Vredenbregt E J D, Luiten O J 2009 Phys. Rev. Lett. 102 034802Google Scholar

    [36]

    Reijnders M P, Debernardi N, van der Geer S B, Mutsaers P H A, Vredenbregt E J D, Luiten O J 2010 Phys. Rev. Lett. 105 034802Google Scholar

    [37]

    Reijnders M P, Debernardi N, van der Geer S B, Mutsaers P H A, Vredenbregt E J D, Luiten O J 2011 J. Appl. Phys. 109 033302Google Scholar

    [38]

    Debernardi N, Reijnders M P, Engelen W J, Clevis T T J, Mutsaers P H A, Luiten O J, Vredenbregt E J D 2011 J. Appl. Phys. 110 024501Google Scholar

    [39]

    Thompson D J, Murphy D, Speirs R W, van Bijnen R M W, McCulloch A J, Scholten R E, Sparkes B M 2016 Phys. Rev. Lett. 117 193202Google Scholar

    [40]

    Murphy D, Scholten R E, Sparkes B M 2015 Phys. Rev. Lett. 115 214802Google Scholar

    [41]

    Duspayev A, Raithel G 2023 Phys. Rev. Appl. 19 044051Google Scholar

    [42]

    Hill S B, McClelland J J 2003 Appl. Phys. Lett. 82 3128Google Scholar

    [43]

    Steele A V, Knuffman B, McClelland J J, Orloff J 2010 J. Vac. Sci. Technol. 28 C6F1Google Scholar

    [44]

    Steele A V, Knuffman B, McClelland J J 2011 J. Appl. Phys. 109 104308Google Scholar

    [45]

    Knuffman B, Steele A V, Orloff J, McClelland J J 2011 New J. Phys. 13 103035Google Scholar

    [46]

    Twedt K A, Chen L, McClelland J J 2014 Ultramicroscopy 142 24Google Scholar

    [47]

    Gardner J R, McGehee W R, McClelland J J 2019 J. Appl. Phys. 125 074904Google Scholar

    [48]

    Gardner J R, McGehee W R, Stiles M D, McClelland J J 2020 J. Vac. Sci. Technol. 38 052803Google Scholar

    [49]

    Bömmels J, Leber E, Gopalan A, Weber J M, Barsotti S, Ruf M W, Hotop H 2001 Rev. Sci. Instrum. 72 4098Google Scholar

    [50]

    Viteau M, Reveillard M, Kime L, Rasser B, Sudraud P, Bruneau Y, Khalili G, Pillet P, Comparat D, Guerri I, Fioretti A, Ciampini D, Allegrini M, Fuso F 2016 Ultramicroscopy 164 70Google Scholar

    [51]

    ten Haaf G, de Raadt T C H, Offermans G P, van Rens J F M, Mutsaers P H A, Vredenbregt E J D, Wouters S H W 2017 Phys. Rev. Appl. 7 054013Google Scholar

    [52]

    ten Haaf G, Wouters S H W, Mutsaers P H A, Vredenbregt E J D 2017 Phys. Rev. A 96 053412Google Scholar

    [53]

    Xu S, Li Y, Vredenbregt E J D 2022 J. Vac. Sci. Technol. 40 042801Google Scholar

    [54]

    Kempshall B W, Schwarz S M, Prenitzer B I, Giannuzzi L A, Irwin R B, Stevie F A 2001 J. Vac. Sci. Technol. 19 749Google Scholar

    [55]

    Utke I, Michler J, Winkler R, Plank H 2020 Micromachines 11 397Google Scholar

    [56]

    Li Y, Xu S, Sezen M, Misirlioglu F B, Vredenbregt E J D 2023 J. Vac. Sci. Technol. 41 042803Google Scholar

    [57]

    Xu S, Li Y, Verheijen M A, Kieft E R, Vredenbregt E J D 2023 J. Vac. Sci. Technol. B 41 042804Google Scholar

    [58]

    Dieckmann K, Spreeuw R J C, Weidemuller M, Walraven J T M 1998 Phys. Rev. A 58 3891Google Scholar

    [59]

    Lu Z T, Corwin K L, Renn M J, Anderson M H, Cornell E A, Wieman C E 1996 Phys. Rev. Lett. 77 3331Google Scholar

    [60]

    Steele A V, Schwarzkopf A, McClelland J J, Knuffman B 2017 Nano Futures 1 015005Google Scholar

    [61]

    Steele A, Schwarzkopf A, Knuffman B 2021 Microsc. Microanal. 27 24Google Scholar

    [62]

    Brown L S, Gabrielse G 1986 Rev. Mod. Phys. 58 233Google Scholar

    [63]

    Raizen M G, Gilligan J M, Bergquist J C, Itano W M, Wineland D J 1992 J. Mod. Optic. 39 233Google Scholar

    [64]

    Fickler R, Schnitzler W, Linke N M, Schmidt-Kaler F, Singer K 2009 J. Mod. Optic. 56 2061Google Scholar

    [65]

    Schnitzler W, Jacob G, Fickler R, Schmidt-Kaler F, Singer K 2010 New J. Phys. 12 065023Google Scholar

    [66]

    Jacob G, Groot-Berning K, Wolf S, Ulm S, Couturier L, Dawkins S T, Poschinger U G, Schmidt-Kaler F, Singer K 2016 Phys. Rev. Lett. 117 043001Google Scholar

    [67]

    Groot-Berning K, Kornher T, Jacob G, Stopp F, Dawkins S T, Kolesov R, Wrachtrup J, Singer K, Schmidt-Kaler F 2019 Phys. Rev. Lett. 123 106802Google Scholar

    [68]

    Groot-Berning K, Jacob G, Osterkamp C, Jelezko F, Schmidt-Kaler F 2021 New J. Phys. 23 063067Google Scholar

    [69]

    McCulloch A J, Speirs R W, Wissenberg S H, Tielen R P M, Sparkes B M, Scholten R E 2018 Phys. Rev. A 97 043423Google Scholar

    [70]

    Dörner R, Mergel V, Jagutzki O, Spielberger L, Ullrich J, Moshammer R, Schmidt-Böcking H 2000 Phys. Rep. 330 95Google Scholar

    [71]

    Depaola B D, Morgenstern R, Andersen N (Arimondo E, et al. ed) 2008 Advances in Atomic, Molecular, and Optical Physics (Vol. 55) pp139–189

    [72]

    Lopez C, Trimeche A, Comparat D, Picard Y J 2019 Phys. Rev. Appl. 11 064049Google Scholar

    [73]

    Hahn R, Trimeche A, Lopez C, Comparat D, Picard Y J 2021 Phys. Rev. A 103 042821Google Scholar

    [74]

    Fang F, Zhou W C, Li Y F, Qian D B, Luo C J, Zhao D M, Ma X W, Yang J 2021 Rev. Sci. Instrum. 92 043103Google Scholar

    [75]

    Zhou W C, Fang F, Luo C J, Qian D B, Yang J, Lu L 2023 J. Appl. Phys. 133 034901Google Scholar

    [76]

    van Bijnen R M W, Ravensbergen C, Bakker D J, Dijk G J, Kokkelmans S J J M F, Vredenbregt E J D 2015 New J. Phys. 17 023045Google Scholar

    [77]

    Beterov I I, Tretyakov D B, Entin V M, Yakshina E A, Ryabtsev I I, MacCormick C, Bergamini S 2011 Phys. Rev. A 84 023413Google Scholar

  • 图 1  超冷离子源的发展路线和重要研究进展

    Fig. 1.  Roadmap and advances of ultracold ion source.

    图 2  原子的一维冷却示意图 (a)速度为$ {\mathrm{\nu }} $的原子与动量为$ {\mathrm{\hslash }}\kappa $在单方向上的光子相互作用; (b)原子吸收定向光子后, 速度减小了$ \hslash \kappa /m $; (c)激发态原子经自发辐射过程随机释放光子回到基态; (d)二能级系统中原子对负失谐光子的吸收($ \hslash \omega $)和发射过程($ \hslash {\omega }_{0} $)

    Fig. 2.  The schematic of one-dimensional cooling atoms: (a) An incoming atom with velocity $ {\mathrm{\nu }} $ interaction with laser with the specific momentum $ {\mathrm{\hslash }}\kappa $ in a single direction; (b) the photon is absorbed and the velocity of the atom has been reduced $ \hslash \kappa /m $ induced by the net momentum transfer; (c) after spontaneous emission, the excited state atom emits a photon in all directions; (d) in a two-level system, the absorption of a red-detuned photon by an atom and the subsequent emission process.

    图 3  电离过程的3种模式示意图[17] (a) 轴向电离模式; (b) 横向电离模式; (c) 交叉双光子模式

    Fig. 3.  The sketch of ionization modes in a MOTIS[17]: (a) Axial mode; (b) transverse mode; (c) two-photon mode

    图 4  能散和束流能量除电荷量后的关系, 插图为5种不同束流电荷量下能散与束流能量的关系[35]

    Fig. 4.  The five measured energy spread and beam energy curves from inset scaled by the bunch charge to a single curve. The inset shows the measured energy spread as a function of the beam energy for five different bunch charges[35]

    图 5  含时电场对超冷离子束相空间的操控 (a)纵向相对能散σU/U与脉冲电场宽度U之间的关系; (b)双极性电场(Vp = 1000 V)条件下, 离子束在x方向上的横向尺寸σxVn 的函数关系[36]

    Fig. 5.  Phase-space manipulation of ultracold ion bunches with time-dependent fields: (a) The longitudinal relative energy spread σU/U versus U is plotted; (b) demonstration of focusing by bipolar voltage pulses with Vp = 1000 V, the transverse size in the x direction σx of the bunch on the detector is measured as a function of Vn[36].

    图 6  离子束斑与束流能量倒数的关系, 其斜率与有效源温度T成正比, 图中实心点为实验测量结果, 红色实线代表线性拟合[38]

    Fig. 6.  Final spot radius squared $ {\sigma }_{x{\mathrm{f}}}^{2} $ vs. the reciprocal of the bunch energy 1/U, the thick line is a linear fit, the slope of which is proportional to the effective source temperature T[38].

    图 7  四种离子束分布及其空间电荷驱动的扩散[39] (a) 径向平均激发光轮廓(实线)与相对激发概率(虚线)的关系; (b) 径向扩散因子与离子数的关系

    Fig. 7.  Four ion bunch distributions and their expansion properties[39]: (a) Measured radially averaged excitation laser profiles (solid lines) and desired profiles (dashed lines), plotted as the relative excitation probability; (b) radial expansion factors against ion number for each shape individually.

    图 8  分子动力学模拟里德伯阻塞机制抑制无序诱导加热[40]  (a)不同阻塞半径条件下, 离子平衡时的发射度和温度随扩散时间的关系; (b)不同扩散时间下, 不同阻塞半径对于阻塞与无序发射度比率的影响

    Fig. 8.  Rydberg blockade mechanism suppressing disorder-induced heating with molecular dynamics simulation[40]: (a) The relationship between the emittance and temperature of ions at equilibrium under different blocking radii, as a function of diffusion time; (b) suppression of disorder-induced heating, expressed as the ratio of blockaded to disordered emittance for different blockade parameters at different expansion times.

    图 9  冷离子源中电场分布测量[41] (a)实验装置示意图; (b)85Rb能级示意图及光电离和激发所需的激光波长; (c)低离子计数率和(d)高离子计数率条件下, 实验测量的57F5/2的Stark 图; (e), (f)对应的模拟Stark图

    Fig. 9.  Measurement of electric field in a cold ion source[41]: (a) Sketch of the experimental setup; (b) diagram of the utilized 85Rb energy levels and configuration of laser beams for photoionization and excitation; (c), (d) experimental Stark maps of 57F5/2 and the neighboring hydrogenic states at the different γ values; (e), (f) the corresponding simulated Stark maps with empirically determined ion rates.

    图 10  Cr-MOTIS装置示意图[43]

    Fig. 10.  The schematic of Cr-MOTIS[43].

    图 11  Li-MOTIS-FIB装置示意图[45]

    Fig. 11.  The sketch of Lithium FIB system [45].

    图 12  (a) Li-MOTIS装置示意图; (b)不同紫外激发功率(Pexc)下离子源亮度(Bp)与束流流强(Pexc)的关系[47]

    Fig. 12.  (a) Schematic of Li-MOTIS; (b) peak normalized brightness (Bp) as a function of total current (Itot) for a range of UV excitation powers (Pexc)[47].

    图 13  场电离里德伯态原子方案的CABIS装置结构示意图[23], 利用2D-MOT技术对高通量原子束进行横向冷却和压缩, 离子或电子(取决于电极的极性)由场电离冷里德伯态原子产生, 之后束流在FIB系统中被加速和聚焦

    Fig. 13.  Sketch of the ultracold electron-ion source producing from CABIS[23], an intense effusive atomic beam is transversely cooled and compressed using laser-cooling techniques, electrons or ions (depending on electrode polarities) are produced by laser excitation to Rydberg states that are then field ionized, the beam is finally focused and accelerated in a FIB column.

    图 14  拍摄的碳衬底上锡球的图像比较 (a)束流能量5 keV, 束流电流7 pA的Cs+-FIB; (b)束流能量5 keV, 束流电流20 pA的商业化产品Ga-LMIS FIB[50]

    Fig. 14.  Comparison between images acquired on a tin on carbon test sample: (a) Our system at 5 keV ion beam energy and 7 pA current; (b) a commercial Ga-LMIS FIB at 5 keV ion beam energy and current 20 pA[50].

    图 15  腔增强电离方案的CABIS装置结构示意图(未按比例绘制)[51]

    Fig. 15.  Schematic diagram of the experimental setup (not drawn to scale) of CABIS for the cavity enhanced photoionization[51].

    图 16  Rb-CABIS-FIB装置示意图(左), 不同剂量Rb+和Ga+刻蚀材料的SEM图像(右图) (a) 8.5 keV的Rb+刻蚀后GaAs靶俯视图; (b) 多晶Au靶俯视图(0°); (c) Au靶侧视图(52°); (d)多晶Cu靶侧视图(52°); (e) 30 keV的Ga+刻蚀后Cu靶侧视图(52°)[53], 标尺为1 μm

    Fig. 16.  Schematic of corresponding Rb-CABIS-FIB (left), SEM images of Rb+ and Ga+ milling patterns on standard samples (right): (a) Top view (0°) of milling patterns on GaAs at 8.5 keV; (b) top view (0°) of milling patterns on polycrystalline Au; (c) tilt view (52°) of (b); (d) tilt view (52°) of milling patterns on polycrystalline Cu; (e) tilt view (52°) of 30 keV Ga+ milling patterns on polycrystalline Cu, ion dose is marked below each pattern[53], scale bar is 1 μm.

    图 17  (a)慢原子束CABIS装置结构示意图, 显示了离子束产生的4个阶段, 即带推杆束磁光压缩器的二维磁光阱、光学糖蜜和电离; (b)标准锡球二次电子图像, 获取自CABIS的聚焦10 keV, 1 pA Cs+离子束[60]

    Fig. 17.  (a) Schematic of the slow cold atomic beam ion source, showing the four stages of ion beam production: 2D magneto-optical trap with pusher beam magneto-optical compressor, optical molasses, and ionization; (b) secondary electron image of a standard tin ball resolution target acquired using a focused 10 keV, 1 pA Cs+ ion beam from the CABIS[60].

    图 18  (a) 单离子显微镜示意图; (b) 波导腔结构的SEM图像, 孔直径约为150 nm; (c)单离子源成像结果, 分辨率为每像素(25 nm×25 nm), 图中的全部信息基于4141个提取的离子中的2659个; (d)泊松分布的离子源成像结果[66]

    Fig. 18.  (a) Sketch of the single ion microscope; (b) SEM image of the waveguide-cavity structure, holes have a diameter of about 150 nm; (c) scan of the cavity structure using one ion at each lateral position, with a resolution of (25 nm× 25 nm) per pixel, the entire information in the picture is based on 2659 transmission events out of 4141 extracted ions; (d) imaging a source with emulated Poissonian behavior[66].

    图 19  (a) 单离子注入装置的示意图; (b)离子荧光的成像; (c) Ca+和Pr+离子束斑测量的直方图[67]; (d)植入区域的共聚焦显微镜图像[68]

    Fig. 19.  (a) Sketch of the single-ion implantation setup; (b) fluorescence of ions imaged; (c) histograms of the profiling edge measurement for Ca+ and Pr+ ions[67]; (d) confocal images of the implanted regions [68].

    图 20  电子-离子符合装置示意图[69]

    Fig. 20.  Schematic of the electron-ion coincidence apparatus [69]

    图 21  (a)实验装置及流程示意图; (b)选定区域离子轨迹二维校正; (c) 在FPGA中实现的虚拟掩模的应用[72]

    Fig. 21.  (a) Sketch of experiment set and procedure; (b) 2D correction on a selected zone for the ion trajectory; (c) application of a virtual mask implemented in the FPGA[72].

    Baidu
  • [1]

    Hoeflich K, Hobler G, Allen F I, Wirtz T, Rius G, McElwee-White L, Krasheninnikov A V, Schmidt M, Utke I, Klingner N, Osenberg M, Cordoba R, Djurabekova F, Manke I, Moll P, Manoccio M, De Teresa J M, Bischoff L, Michler J, De Castro O, Delobbe A, Dunne P, Dobrovolskiy O V, Frese N, Goelzhaeuser A, Mazarov P, Koelle D, Moeller W, Perez-Murano F, Philipp P, Vollnhals F, Hlawacek G 2023 Appl. Phys. Rev. 10 041311Google Scholar

    [2]

    Manoccio M, Esposito M, Passaseo A, Cuscuna M, Tasco V 2021 Micromachines 12 6Google Scholar

    [3]

    Sloyan K, Melkonyan H, Apostoleris H, Dahlem M S, Chiesa M, Al Ghaferi A 2021 Nanotechnology 32 472004Google Scholar

    [4]

    Li P, Chen S Y, Dai H F, Yang Z M, Chen Z Q, Wang Y S, Chen Y Q, Peng W Q, Shan W B, Duan H G 2021 Nanoscale 13 1529Google Scholar

    [5]

    Lesik M, Spinicelli P, Pezzagna S, Happel P, Jacques V, Salord O, Rasser B, Delobbe A, Sudraud P, Tallaire A, Meijer J, Roch J-F 2013 Physica Status Solidi a-Applications and Materials Science 210 2055Google Scholar

    [6]

    Bradac C, Gao W, Forneris J, Trusheim M E, Aharonovich I 2019 Nat. Commun. 10 5625Google Scholar

    [7]

    Haruyama M, Onoda S, Higuchi T, Kada W, Chiba A, Hirano Y, Teraji T, Igarashi R, Kawai S, Kawarada H, Ishii Y, Fukuda R, Tanii T, Isoya J, Ohshima T, Hanaizumi O 2019 Nat. Commun. 10 2664Google Scholar

    [8]

    Swanson L W, Schwind G A 1978 J. Appl. Phys. 49 5655Google Scholar

    [9]

    Bischoff L, Mazarov P, Bruchhaus L, Gierak J 2016 Appl. Phys. Rev. 3 021101Google Scholar

    [10]

    He S X, Tian R, Wu W, Li W D, Wang D P 2021 IJEM 3 012001Google Scholar

    [11]

    Ward B W, Notte J A, Economou N P 2006 J. Vac. Sci. Technol. B 24 2871Google Scholar

    [12]

    Rahman F H M, McVey S, Farkas L, Notte J A, Tan S, Livengood R H 2012 Scanning 34 129Google Scholar

    [13]

    Smith N S, Notte J A, Steele A V 2014 Mrs Bull. 39 329Google Scholar

    [14]

    Prodan J V, Phillips W D, Metcalf H 1982 Phys. Rev. Lett. 49 1149Google Scholar

    [15]

    Chu S, Hollberg L, Bjorkholm J E, Cable A, Ashkin A 1985 Phys. Rev. Lett. 55 48Google Scholar

    [16]

    Softley T P 2023 P. Roy. Soc. A-Math. Phys. 479 20220806Google Scholar

    [17]

    McClelland J J, Steele A V, Knuffman B, Twedt K A, Schwarzkopf A, Wilson T M 2016 Appl. Phys. Rev. 3 011302Google Scholar

    [18]

    Freinkman B G, Eletskii A V, Zaitsev S I 2003 Jetp Lett. 78 255Google Scholar

    [19]

    van der Geer S B, Reijnders M P, de Loos M J, Vredenbregt E J D, Mutsaers P H A, Luiten O J 2007 J. Appl. Phys. 102 094312Google Scholar

    [20]

    Claessens B J, Reijnders M P, Taban G, Luiten O J, Vredenbregt E J D 2007 Phys. Plasmas 14 093101Google Scholar

    [21]

    Hanssen J L, Hill S B, Orloff J, McClelland J J 2008 Nano Lett. 8 2844Google Scholar

    [22]

    Murphy D, Speirs R W, Sheludko D V, Putkunz C T, McCulloch A J, Sparkes B M, Scholten R E 2014 Nat. Commun. 5 4489Google Scholar

    [23]

    Kime L, Fioretti A, Bruneau Y, Porfido N, Fuso F, Viteau M, Khalili G, Santic N, Gloter A, Rasser B, Sudraud P, Pillet P, Comparat D 2013 Phys. Rev. A 88 33424Google Scholar

    [24]

    Wouters S H W, ten Haaf G, Notermans R P M J W, Debernardi N, Mutsaers P H A, Luiten O J, Vredenbregt E J D 2014 Phys. Rev. A 90 063817Google Scholar

    [25]

    ten Haaf G, Wouters S H W, van der Geer S B, Vredenbregt E J D, Mutsaers P H A 2014 J. Appl. Phys. 116 244301Google Scholar

    [26]

    Knuffman B, Steele A V, McClelland J J 2013 J. Appl. Phys. 114 044303Google Scholar

    [27]

    Schnitzler W, Linke N M, Fickler R, Meijer J, Schmidt-Kaler F, Singer K 2009 Phys. Rev. Lett. 102 070501Google Scholar

    [28]

    Sahin C, Geppert P, Muellers A, Ott H 2017 New J. Phys. 19 123005Google Scholar

    [29]

    Hansch T W, Schawlow A L 1975 Opt. Commun. 13 68Google Scholar

    [30]

    Phillips W D 1998 Rev. Mod. Phys. 70 721Google Scholar

    [31]

    Chu S 1998 Rev. Mod. Phys. 70 685Google Scholar

    [32]

    Cohen-Tannoudji C N 1998 Rev. Mod. Phys. 70 707Google Scholar

    [33]

    王义遒 2007 原子的激光冷却与陷俘(北京: 北京大学出版社)

    Wang Y Q 2007 Laser Cooled and Trapped Atoms (Beijing: Peking University Press

    [34]

    Lett P D, Watts R N, Westbrook C I, Phillips W D, Gould P L, Metcalf H J 1988 Phys. Rev. Lett. 61 169Google Scholar

    [35]

    Reijnders M P, van Kruisbergen P A, Taban G, van der Geer S B, Mutsaers P H A, Vredenbregt E J D, Luiten O J 2009 Phys. Rev. Lett. 102 034802Google Scholar

    [36]

    Reijnders M P, Debernardi N, van der Geer S B, Mutsaers P H A, Vredenbregt E J D, Luiten O J 2010 Phys. Rev. Lett. 105 034802Google Scholar

    [37]

    Reijnders M P, Debernardi N, van der Geer S B, Mutsaers P H A, Vredenbregt E J D, Luiten O J 2011 J. Appl. Phys. 109 033302Google Scholar

    [38]

    Debernardi N, Reijnders M P, Engelen W J, Clevis T T J, Mutsaers P H A, Luiten O J, Vredenbregt E J D 2011 J. Appl. Phys. 110 024501Google Scholar

    [39]

    Thompson D J, Murphy D, Speirs R W, van Bijnen R M W, McCulloch A J, Scholten R E, Sparkes B M 2016 Phys. Rev. Lett. 117 193202Google Scholar

    [40]

    Murphy D, Scholten R E, Sparkes B M 2015 Phys. Rev. Lett. 115 214802Google Scholar

    [41]

    Duspayev A, Raithel G 2023 Phys. Rev. Appl. 19 044051Google Scholar

    [42]

    Hill S B, McClelland J J 2003 Appl. Phys. Lett. 82 3128Google Scholar

    [43]

    Steele A V, Knuffman B, McClelland J J, Orloff J 2010 J. Vac. Sci. Technol. 28 C6F1Google Scholar

    [44]

    Steele A V, Knuffman B, McClelland J J 2011 J. Appl. Phys. 109 104308Google Scholar

    [45]

    Knuffman B, Steele A V, Orloff J, McClelland J J 2011 New J. Phys. 13 103035Google Scholar

    [46]

    Twedt K A, Chen L, McClelland J J 2014 Ultramicroscopy 142 24Google Scholar

    [47]

    Gardner J R, McGehee W R, McClelland J J 2019 J. Appl. Phys. 125 074904Google Scholar

    [48]

    Gardner J R, McGehee W R, Stiles M D, McClelland J J 2020 J. Vac. Sci. Technol. 38 052803Google Scholar

    [49]

    Bömmels J, Leber E, Gopalan A, Weber J M, Barsotti S, Ruf M W, Hotop H 2001 Rev. Sci. Instrum. 72 4098Google Scholar

    [50]

    Viteau M, Reveillard M, Kime L, Rasser B, Sudraud P, Bruneau Y, Khalili G, Pillet P, Comparat D, Guerri I, Fioretti A, Ciampini D, Allegrini M, Fuso F 2016 Ultramicroscopy 164 70Google Scholar

    [51]

    ten Haaf G, de Raadt T C H, Offermans G P, van Rens J F M, Mutsaers P H A, Vredenbregt E J D, Wouters S H W 2017 Phys. Rev. Appl. 7 054013Google Scholar

    [52]

    ten Haaf G, Wouters S H W, Mutsaers P H A, Vredenbregt E J D 2017 Phys. Rev. A 96 053412Google Scholar

    [53]

    Xu S, Li Y, Vredenbregt E J D 2022 J. Vac. Sci. Technol. 40 042801Google Scholar

    [54]

    Kempshall B W, Schwarz S M, Prenitzer B I, Giannuzzi L A, Irwin R B, Stevie F A 2001 J. Vac. Sci. Technol. 19 749Google Scholar

    [55]

    Utke I, Michler J, Winkler R, Plank H 2020 Micromachines 11 397Google Scholar

    [56]

    Li Y, Xu S, Sezen M, Misirlioglu F B, Vredenbregt E J D 2023 J. Vac. Sci. Technol. 41 042803Google Scholar

    [57]

    Xu S, Li Y, Verheijen M A, Kieft E R, Vredenbregt E J D 2023 J. Vac. Sci. Technol. B 41 042804Google Scholar

    [58]

    Dieckmann K, Spreeuw R J C, Weidemuller M, Walraven J T M 1998 Phys. Rev. A 58 3891Google Scholar

    [59]

    Lu Z T, Corwin K L, Renn M J, Anderson M H, Cornell E A, Wieman C E 1996 Phys. Rev. Lett. 77 3331Google Scholar

    [60]

    Steele A V, Schwarzkopf A, McClelland J J, Knuffman B 2017 Nano Futures 1 015005Google Scholar

    [61]

    Steele A, Schwarzkopf A, Knuffman B 2021 Microsc. Microanal. 27 24Google Scholar

    [62]

    Brown L S, Gabrielse G 1986 Rev. Mod. Phys. 58 233Google Scholar

    [63]

    Raizen M G, Gilligan J M, Bergquist J C, Itano W M, Wineland D J 1992 J. Mod. Optic. 39 233Google Scholar

    [64]

    Fickler R, Schnitzler W, Linke N M, Schmidt-Kaler F, Singer K 2009 J. Mod. Optic. 56 2061Google Scholar

    [65]

    Schnitzler W, Jacob G, Fickler R, Schmidt-Kaler F, Singer K 2010 New J. Phys. 12 065023Google Scholar

    [66]

    Jacob G, Groot-Berning K, Wolf S, Ulm S, Couturier L, Dawkins S T, Poschinger U G, Schmidt-Kaler F, Singer K 2016 Phys. Rev. Lett. 117 043001Google Scholar

    [67]

    Groot-Berning K, Kornher T, Jacob G, Stopp F, Dawkins S T, Kolesov R, Wrachtrup J, Singer K, Schmidt-Kaler F 2019 Phys. Rev. Lett. 123 106802Google Scholar

    [68]

    Groot-Berning K, Jacob G, Osterkamp C, Jelezko F, Schmidt-Kaler F 2021 New J. Phys. 23 063067Google Scholar

    [69]

    McCulloch A J, Speirs R W, Wissenberg S H, Tielen R P M, Sparkes B M, Scholten R E 2018 Phys. Rev. A 97 043423Google Scholar

    [70]

    Dörner R, Mergel V, Jagutzki O, Spielberger L, Ullrich J, Moshammer R, Schmidt-Böcking H 2000 Phys. Rep. 330 95Google Scholar

    [71]

    Depaola B D, Morgenstern R, Andersen N (Arimondo E, et al. ed) 2008 Advances in Atomic, Molecular, and Optical Physics (Vol. 55) pp139–189

    [72]

    Lopez C, Trimeche A, Comparat D, Picard Y J 2019 Phys. Rev. Appl. 11 064049Google Scholar

    [73]

    Hahn R, Trimeche A, Lopez C, Comparat D, Picard Y J 2021 Phys. Rev. A 103 042821Google Scholar

    [74]

    Fang F, Zhou W C, Li Y F, Qian D B, Luo C J, Zhao D M, Ma X W, Yang J 2021 Rev. Sci. Instrum. 92 043103Google Scholar

    [75]

    Zhou W C, Fang F, Luo C J, Qian D B, Yang J, Lu L 2023 J. Appl. Phys. 133 034901Google Scholar

    [76]

    van Bijnen R M W, Ravensbergen C, Bakker D J, Dijk G J, Kokkelmans S J J M F, Vredenbregt E J D 2015 New J. Phys. 17 023045Google Scholar

    [77]

    Beterov I I, Tretyakov D B, Entin V M, Yakshina E A, Ryabtsev I I, MacCormick C, Bergamini S 2011 Phys. Rev. A 84 023413Google Scholar

  • [1] 汤诗奕, 马梓淇, 邹云霄, 安小凯, 杨东杰, 刘亮亮, 崔岁寒, 吴忠振. 大束流阳极层离子源的阴极刻蚀现象及消除措施.  , 2024, 73(18): 185202. doi: 10.7498/aps.73.20240494
    [2] 李桑丫, 张艾霖, 徐欣, 吕涛, 王世康, 罗箐. 基于强流离子源的离子束溅射镀膜设备均匀性优化.  , 2024, 73(5): 058101. doi: 10.7498/aps.73.20231491
    [3] 崔岁寒, 左伟, 黄健, 李熙腾, 陈秋皓, 郭宇翔, 杨超, 吴忠灿, 马正永, 傅劲裕, 田修波, 朱剑豪, 吴忠振. 面向复杂求解域的高效粒子网格/蒙特卡罗模型与阳极层离子源仿真.  , 2023, 72(8): 085202. doi: 10.7498/aps.72.20222394
    [4] 付瑜亮, 杨涓, 王彬, 胡展, 夏旭, 牟浩. 2 cm电子回旋共振离子源猝灭现象模拟.  , 2022, 71(8): 085203. doi: 10.7498/aps.71.20212151
    [5] 武文斌, 彭士香, 张艾霖, 周海京, 马腾昊, 蒋耀湘, 李凯, 崔步坚, 郭之虞, 陈佳洱. 微型电子回旋共振离子源的全局模型.  , 2022, 71(14): 145204. doi: 10.7498/aps.71.20212250
    [6] 夏旭, 杨涓, 付瑜亮, 吴先明, 耿海, 胡展. 2 cm电子回旋共振离子推力器离子源中磁场对等离子体特性与壁面电流影响的数值模拟.  , 2021, 70(7): 075204. doi: 10.7498/aps.70.20201667
    [7] 陈珊珊, 刘幸, 刘之光, 李家方. 基于聚焦离子束纳米剪纸/折纸形变的三维微纳制造技术及其光学应用.  , 2019, 68(24): 248101. doi: 10.7498/aps.68.20191494
    [8] 金逸舟, 杨涓, 冯冰冰, 罗立涛, 汤明杰. 不同磁路电子回旋共振离子源引出实验.  , 2016, 65(4): 045201. doi: 10.7498/aps.65.045201
    [9] 杨超, 印茂伟, 尚丽萍, 王卫, 刘毅, 夏连胜, 邓建军. 多峰场负氢离子源磁体布局对等离子体特性影响的数值模拟研究.  , 2015, 64(8): 085203. doi: 10.7498/aps.64.085203
    [10] 汤明杰, 杨涓, 金逸舟, 罗立涛, 冯冰冰. 微型电子回旋共振离子推力器离子源结构优化实验研究.  , 2015, 64(21): 215202. doi: 10.7498/aps.64.215202
    [11] 杨超, 廖方燕, 谢鸿全. Japan Atomic Energy Agency 10 Ampere多峰负氢离子源全三维数值诊断.  , 2013, 62(21): 215202. doi: 10.7498/aps.62.215202
    [12] 杨超, 刘大刚, 夏蒙重, 王辉辉, 王小敏, 刘腊群, 彭凯. J-PARC多峰离子源体积产生效率三维数值模拟研究.  , 2012, 61(18): 185204. doi: 10.7498/aps.61.185204
    [13] 杨超, 刘大刚, 夏蒙重, 王辉辉, 王小敏, 刘腊群, 彭凯. JAERI 10 A 离子源体积产生效率数值优化.  , 2012, 61(18): 185205. doi: 10.7498/aps.61.185205
    [14] 杨超, 刘大刚, 刘腊群, 夏蒙重, 王辉辉, 王小敏. 负氢离子源中电子能量沉积三维数值模拟研究.  , 2012, 61(15): 155205. doi: 10.7498/aps.61.155205
    [15] 杨超, 刘大刚, 陈颖, 夏蒙重, 王学琼, 王小敏. 多峰离子源的三维数值模拟优化与设计.  , 2012, 61(13): 135203. doi: 10.7498/aps.61.135203
    [16] 杨超, 刘大刚, 王小敏, 刘腊群, 王学琼, 刘盛纲. 基于负氢离子源的全三维PIC/MCC模拟算法研究.  , 2012, 61(4): 045204. doi: 10.7498/aps.61.045204
    [17] 何丽静, 林晓娉, 王铁宝, 刘春阳. 单晶Si表面离子束溅射沉积Co纳米薄膜的研究.  , 2007, 56(12): 7158-7164. doi: 10.7498/aps.56.7158
    [18] 王震遐, 俞国庆, 阮美龄, 朱福英, 朱德彰, 潘浩昌, 徐洪杰. Ar+离子束轰击在石墨表面形成六方金刚石纳米晶的研究.  , 2000, 49(8): 1524-1527. doi: 10.7498/aps.49.1524
    [19] 盛谏. 高频离子源引出结构最佳尺寸的光学计算.  , 1963, 19(12): 782-790. doi: 10.7498/aps.19.782
    [20] 古月. 高频离子源的一些特性.  , 1960, 16(2): 107-110. doi: 10.7498/aps.16.107
计量
  • 文章访问数:  1039
  • PDF下载量:  44
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-05-16
  • 修回日期:  2024-07-08
  • 上网日期:  2024-08-09
  • 刊出日期:  2024-09-05

/

返回文章
返回
Baidu
map