搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

电解液浓度对光电极表面气泡演化及传质特性的影响

王孟莎 徐强 聂腾飞 罗欣怡 郭烈锦

引用本文:
Citation:

电解液浓度对光电极表面气泡演化及传质特性的影响

王孟莎, 徐强, 聂腾飞, 罗欣怡, 郭烈锦

Effect of electrolyte concentration on bubble evolution and mass transfer characteristics on surface of photoelectrode

Wang Meng-Sha, Xu Qiang, Nie Teng-Fei, Luo Xin-Yi, Guo Lie-Jin
cstr: 32037.14.aps.73.20240533
PDF
HTML
导出引用
  • 在光电化学分解水反应中, 气泡会覆盖光电极表面的反应区域, 从而影响反应阻抗和气液传质. 本文搭建了激光照射系统, 并将其与电化学工作站、高速显微成像系统耦合. 在不同电解液浓度下(Na2SO4, 0.1—2.0 mol/L), 研究了TiO2析气光电极表面单个氧气泡的演化行为及其传质特性. 随着电解液浓度从0.1 mol/L升高到2.0 mol/L, 溶液电阻与气泡附加电阻降低, 气泡稳定生长阶段的过电势从0.113 V下降到–0.089 V. 气泡在成核、生长和脱离阶段会引起过电势的波动, 这与液相中溶解气浓度的变化引起的阻抗变化相吻合. 通过分析析气效率与气泡覆盖率的关联, 发现电解液浓度提高会导致气泡覆盖率和析气效率同步下降. 通过计算舍伍德无量纲数, 发现总对流传质系数随着电解液浓度的增大而增大; 单相自然对流在气体产物传递过程中占据主导地位, 其传质系数比气泡诱导对流传质系数大一个数量级.
    In the photoelectrochemical water splitting reaction system, bubbles will cover the reaction area on the photoelectrode surface, affecting the reaction impedance and gas-liquid mass transfer. A laser irradiation system is built and it is coupled with an electrochemical workstation and high-speed microscopic imaging system. The evolution behavior and mass transfer characteristics of single O2 bubble on the TiO2 photoelectrode are studied at different electrolyte concentrations (Na2SO4, 0.1–2.0 mol/L). With the increase of electrolyte concentration from 0.1 mol/L to 2.0 mol/L, the solution resistance and bubble additional resistance decrease, and the overpotential in the stable growth stage of bubble decreases from 0.113 V to –0.089 V. The bubble will cause the fluctuation of overpotential in the nucleation, growth and detachment stages, which is consistent with the impedance change caused by the change of dissolved oxygen concentration in the liquid phase. By analyzing the correlation between gas evolution efficiency and bubble coverage, it is found that the increase of electrolyte concentration will lead the bubble coverage and gas evolution efficiency to decrease simultaneously. By calculating the Sherwood dimensionless number, the results show that the total convective mass transfer coefficient increases with the electrolyte concentration increasing. Single-phase natural convection plays a dominant role in the process of gas product transfer, and its mass transfer coefficient is one order of magnitude larger than that of bubble-induced convection. In summary, by adjusting the electrolyte concentration, the bubble on the gas evolution photoelectrode surface can be effectively removed and the mass transfer of the system can be optimized, which is of great significance in improving the efficiency of photoelectrochemical water splitting.
      通信作者: 徐强, qiang.xu@mail.xjtu.edu.cn ; 郭烈锦, lj-guo@mail.xjtu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 52076175)资助的课题.
      Corresponding author: Xu Qiang, qiang.xu@mail.xjtu.edu.cn ; Guo Lie-Jin, lj-guo@mail.xjtu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 52076175).
    [1]

    Fujishima A, Honda K 1972 Nature 238 37Google Scholar

    [2]

    Wang R, Hashimoto K, Fujishima A, Chikuni M, Kojima E, Kitamura A, Shimohigoshi M, Watanabe T 1997 Nature 388 431Google Scholar

    [3]

    黄柏标, 王朋, 张晓阳, 秦晓燕, 戴瑛 2009 科学通报 54 847Google Scholar

    Huang B B, Wang P, Zhang X Y, Qin X Y, Dai Y 2009 Sci. Bull. 54 847Google Scholar

    [4]

    陈娟雯, 郭烈锦, 胡晓玮, 曹振山 2018 工程热 39 550

    Chen J W, Guo L J, Hu X W, Cao Z S 2018 J. Eng. Thermophys. 39 550

    [5]

    郭烈锦, 曹振山, 王晔春, 张博, 冯雨杨, 徐强 2023 西安交通大学学报 57 1Google Scholar

    Guo L J, Cao Z S, Wang Y C, Zhang B, Feng Y Y, Xu Q 2023 J. Xi'an Jiaotong Univ. 57 1Google Scholar

    [6]

    Tawfik M E, Diez F J 2014 Electrochim. Acta 146 792Google Scholar

    [7]

    Matsushima H, Iida T, Fukunaka Y 2012 J. Solid State Electrochem. 16 617Google Scholar

    [8]

    Li Y J, Zhang H C, Xu T H, Lu Z Y, Wu X C, Wan P B, Sun X M, Jiang L 2015 Adv. Funct. Mater. 25 1737Google Scholar

    [9]

    Chen J W, Guo L J 2019 Appl. Phys. Lett. 115 101602Google Scholar

    [10]

    Lu X, Lalwani S, Yuan L, Abdelsalam M A, AlMarzooqi F, Zhang T 2022 Int. J. Hydrogen Energ. 47 36504Google Scholar

    [11]

    Ansari S A, Khan M M, Ansari M O, Cho M H 2016 New J. Chem. 40 3000Google Scholar

    [12]

    Piontek S, Andronescu C, Zaichenko A, Konkena B, Puring K J, Marler B, Antoni H, Sinev I, Muhler M, Mollenhauer D, Roldan Cuenya B, Schuhmann W, Apfel U P 2018 ACS Catal. 8 987Google Scholar

    [13]

    Ye X, Xu Q, Nie T F, Luo X Y, Jiang S, Guo L J 2023 J. Phys. Chem. C 127 22085Google Scholar

    [14]

    Bashkatov A, Yang X, Mutschke G, Fritzsche B, Hossain S S, Eckert K 2021 Phys. Chem. Chem. Phys. 23 11818Google Scholar

    [15]

    Matsushima H, Fukunaka Y, Kuribayashi K 2006 Electrochim. Acta 51 4190Google Scholar

    [16]

    Lubetkin S D, Akhtar M 1996 J. Colloid Interf. Sci. 180 43Google Scholar

    [17]

    Baczyzmalski D, Karnbach F, Yang X, Mutschke G, Uhlemann M, Eckert K, Cierpka C 2016 J. Electrochem. Soc. 163 E248Google Scholar

    [18]

    Cao Z S, Zhang B, Feng Y Y, Xu Q, Wang Y C, Guo L J 2022 Electrochim. Acta 434 141293Google Scholar

    [19]

    Wang H P, Xu Z X, Lin W, Yang X, Gu X R, Zhu W, Zhuang Z B 2023 Nano Res. 16 420Google Scholar

    [20]

    Obata K, Stegenburga L, Takanabe K 2019 J. Phys. Chem. C 123 21554Google Scholar

    [21]

    Liu Y, Jiang J G, Xu Q, Li M T, Guo L J 2013 Mater. Res. Bull. 48 4548Google Scholar

    [22]

    Hu X W, Cao Z S, Wang Y C, Shen S, Guo L J, Chen J W 2016 Electrochim. Acta 202 175Google Scholar

    [23]

    Thoroddsen S T, Etoh T G, Takehara K 2008 Annu. Rev. Fluid Mech. 40 257Google Scholar

    [24]

    Rox H, Bashkatov A, Yang X, Loos S, Mutschke G, Gerbeth G, Eckert K 2022 Int. J. Hydrog. Energ. 48 2892Google Scholar

    [25]

    Vogt H 1993 Electrochim. Acta 38 1421Google Scholar

    [26]

    Lubetkin S, Blackwell M 1988 J. Colloid Interf. Sci. 126 610Google Scholar

    [27]

    Scriven L E 1959 Chem. Eng. Sci. 10 1Google Scholar

    [28]

    Chandran P, Bakshi S, Chatterjee D 2015 Chem. Eng. Sci. 138 99Google Scholar

    [29]

    Vogt H, Balzer R J 2005 Electrochim. Acta 50 2073Google Scholar

    [30]

    Wei J J, Xue Y F, Zhao J F, Li J 2011 Chin. Phys. Lett. 28 016401Google Scholar

    [31]

    Chen J W, Guo L J, Hu X W, Cao Z S, Wang Y C 2018 Electrochim. Acta 274 57Google Scholar

    [32]

    Wang M S, Nie T F, She Y, Tao L, Luo X Y, Xu Q, Guo L J 2023 Int. J. Hydrog. Energ. 48 23387Google Scholar

    [33]

    Bashkatov A, Hossain S S, Yang X, Mutschke G, Eckert K 2019 Phys. Rev. Lett. 123 214503Google Scholar

    [34]

    Vogt H 1993 Electrochim. Acta 38 1427Google Scholar

    [35]

    Vogt H 2017 Electrochim. Acta 235 495Google Scholar

    [36]

    Vogt H 2013 Electrochim. Acta 87 611Google Scholar

    [37]

    Shah A, Jorne J 1989 J. Electrochem. Soc. 136 144Google Scholar

    [38]

    Lochiel A C, Calderbank P H 1964 Chem. Eng. Sci. 19 471Google Scholar

  • 图 1  光电化学分解水实验系统图(1-紫外激光发生器; 2-光束扩展器; 3-透镜; 4-Ag/AgCl参比电极; 5-铂片对电极; 6-纳米棒状TiO2薄膜工作电极; 7-石英反应池; 8-电化学工作站; 9-计算机; 10-高速摄像机; 11-显微镜头; 12-LED照明光源)

    Fig. 1.  Experimental measurement system diagram (1-UV laser generator; 2-beam expander; 3-lens; 4-Ag/AgCl reference electrode; 5-platinum counter electrode; 6-nanorod TiO2 film working electrode; 7-quartz reaction cell; 8-electrochemical workstation; 9-computer; 10-high speed camera; 11-micro-lens; 12-LED lighting source).

    图 2  MATLAB程序处理气泡图像 (a)裁剪高速相机拍摄的气泡图像; (b)将图像转换为黑白二值图; (c)在黑白二值图上识别气泡直径的像素点; (d)在黑白二值图上识别气泡的接触直径和接触角

    Fig. 2.  Bubble images processed by Matlab program: (a) Cutting bubble image; (b) converting image into a black and white binary image; (c) identifying pixels of bubble diameter on the black and white binary image; (d) identifying contact diameter and contact angle of bubble.

    图 3  气泡演化引起的过电势波动

    Fig. 3.  Bubble evolution corresponding to overpotential at different moments (concentration of 0.3 mol/L).

    图 4  气泡直径随生长时间的变化 (a)线性坐标; (b)双对数坐标

    Fig. 4.  Bubble diameter at different concentrations with growth time: (a) The linear coordinate; (b) the logarithmic coordinate.

    图 5  (a) 0.1—2.0 mol/L电解液浓度下的过电势波动曲线; (b)稳态氧浓度与稳态过电位的关系

    Fig. 5.  (a) Overpotential fluctuation curves with time during bubble growth at 0.1–2.0 mol/L electrolyte concentration; (b) the relationship between steady-state oxygen concentration and steady-state overpotential.

    图 6  (a)平均气泡周期和脱离直径随电解液浓度的变化; (b)气泡产量随电解液浓度的变化

    Fig. 6.  (a) Variations of average bubble period and departure diameter with electrolyte concentration; (b) the variation of bubble production with electrolyte concentration.

    图 7  不同电解液浓度下的析气效率和气泡覆盖率 (a)电解液浓度为0.5 mol/L时析气效率和气泡覆盖率随气泡生长时间的变化; (b)平均析气效率和气泡覆盖率随电解液浓度的变化

    Fig. 7.  Gas evolution efficiency fg and bubble coverage Θ at different electrolyte concentration: (a) The variation curves of fg and Θ with bubble growth time when the electrolyte concentration is 0.5 mol/L; (b) the variation curves of $ {{\bar f}_{{\mathrm{g}}}} $ and $ \overline{\varTheta } $ with electrolyte concentration.

    图 8  不同电解液浓度下, 瞬态析气效率(a)、气泡覆盖率(b)和光电流密度(c)的变化曲线

    Fig. 8.  Variation of transient gas evolution efficiency (a), gas bubble coverage (b) and photocurrent density (c) at different electrolyte concentrations.

    图 9  平均单相自然对流传质系数$ {{\bar k}_{{\mathrm{s}}}} $、气泡诱导对流传质系数$ {{\bar k}_{{\mathrm{b}}}} $和总对流传质系数$ {{\bar k}_{{\mathrm{e}}}} $随电解液浓度的变化

    Fig. 9.  Variation curves of average mass transfer coefficients of single-phase natural convection $ {{\bar k}_{{\mathrm{s}}}} $, bubble-induced convection $ {{\bar k}_{{\mathrm{b}}}} $ and total convection ${{\bar k}_{{\mathrm{e}}}} $ with electrolyte concentration.

    图 10  不同电解液浓度下, 单相自然对流传质系数ks、气泡诱导对流传质系数kb和总对流传质系数ke随气泡生长时间的变化

    Fig. 10.  Variation curves of mass transfer coefficients of single-phase natural convection ks, bubble-induced convection kb and total convection ke with bubble growth time at different electrolyte concentrations.

    Baidu
  • [1]

    Fujishima A, Honda K 1972 Nature 238 37Google Scholar

    [2]

    Wang R, Hashimoto K, Fujishima A, Chikuni M, Kojima E, Kitamura A, Shimohigoshi M, Watanabe T 1997 Nature 388 431Google Scholar

    [3]

    黄柏标, 王朋, 张晓阳, 秦晓燕, 戴瑛 2009 科学通报 54 847Google Scholar

    Huang B B, Wang P, Zhang X Y, Qin X Y, Dai Y 2009 Sci. Bull. 54 847Google Scholar

    [4]

    陈娟雯, 郭烈锦, 胡晓玮, 曹振山 2018 工程热 39 550

    Chen J W, Guo L J, Hu X W, Cao Z S 2018 J. Eng. Thermophys. 39 550

    [5]

    郭烈锦, 曹振山, 王晔春, 张博, 冯雨杨, 徐强 2023 西安交通大学学报 57 1Google Scholar

    Guo L J, Cao Z S, Wang Y C, Zhang B, Feng Y Y, Xu Q 2023 J. Xi'an Jiaotong Univ. 57 1Google Scholar

    [6]

    Tawfik M E, Diez F J 2014 Electrochim. Acta 146 792Google Scholar

    [7]

    Matsushima H, Iida T, Fukunaka Y 2012 J. Solid State Electrochem. 16 617Google Scholar

    [8]

    Li Y J, Zhang H C, Xu T H, Lu Z Y, Wu X C, Wan P B, Sun X M, Jiang L 2015 Adv. Funct. Mater. 25 1737Google Scholar

    [9]

    Chen J W, Guo L J 2019 Appl. Phys. Lett. 115 101602Google Scholar

    [10]

    Lu X, Lalwani S, Yuan L, Abdelsalam M A, AlMarzooqi F, Zhang T 2022 Int. J. Hydrogen Energ. 47 36504Google Scholar

    [11]

    Ansari S A, Khan M M, Ansari M O, Cho M H 2016 New J. Chem. 40 3000Google Scholar

    [12]

    Piontek S, Andronescu C, Zaichenko A, Konkena B, Puring K J, Marler B, Antoni H, Sinev I, Muhler M, Mollenhauer D, Roldan Cuenya B, Schuhmann W, Apfel U P 2018 ACS Catal. 8 987Google Scholar

    [13]

    Ye X, Xu Q, Nie T F, Luo X Y, Jiang S, Guo L J 2023 J. Phys. Chem. C 127 22085Google Scholar

    [14]

    Bashkatov A, Yang X, Mutschke G, Fritzsche B, Hossain S S, Eckert K 2021 Phys. Chem. Chem. Phys. 23 11818Google Scholar

    [15]

    Matsushima H, Fukunaka Y, Kuribayashi K 2006 Electrochim. Acta 51 4190Google Scholar

    [16]

    Lubetkin S D, Akhtar M 1996 J. Colloid Interf. Sci. 180 43Google Scholar

    [17]

    Baczyzmalski D, Karnbach F, Yang X, Mutschke G, Uhlemann M, Eckert K, Cierpka C 2016 J. Electrochem. Soc. 163 E248Google Scholar

    [18]

    Cao Z S, Zhang B, Feng Y Y, Xu Q, Wang Y C, Guo L J 2022 Electrochim. Acta 434 141293Google Scholar

    [19]

    Wang H P, Xu Z X, Lin W, Yang X, Gu X R, Zhu W, Zhuang Z B 2023 Nano Res. 16 420Google Scholar

    [20]

    Obata K, Stegenburga L, Takanabe K 2019 J. Phys. Chem. C 123 21554Google Scholar

    [21]

    Liu Y, Jiang J G, Xu Q, Li M T, Guo L J 2013 Mater. Res. Bull. 48 4548Google Scholar

    [22]

    Hu X W, Cao Z S, Wang Y C, Shen S, Guo L J, Chen J W 2016 Electrochim. Acta 202 175Google Scholar

    [23]

    Thoroddsen S T, Etoh T G, Takehara K 2008 Annu. Rev. Fluid Mech. 40 257Google Scholar

    [24]

    Rox H, Bashkatov A, Yang X, Loos S, Mutschke G, Gerbeth G, Eckert K 2022 Int. J. Hydrog. Energ. 48 2892Google Scholar

    [25]

    Vogt H 1993 Electrochim. Acta 38 1421Google Scholar

    [26]

    Lubetkin S, Blackwell M 1988 J. Colloid Interf. Sci. 126 610Google Scholar

    [27]

    Scriven L E 1959 Chem. Eng. Sci. 10 1Google Scholar

    [28]

    Chandran P, Bakshi S, Chatterjee D 2015 Chem. Eng. Sci. 138 99Google Scholar

    [29]

    Vogt H, Balzer R J 2005 Electrochim. Acta 50 2073Google Scholar

    [30]

    Wei J J, Xue Y F, Zhao J F, Li J 2011 Chin. Phys. Lett. 28 016401Google Scholar

    [31]

    Chen J W, Guo L J, Hu X W, Cao Z S, Wang Y C 2018 Electrochim. Acta 274 57Google Scholar

    [32]

    Wang M S, Nie T F, She Y, Tao L, Luo X Y, Xu Q, Guo L J 2023 Int. J. Hydrog. Energ. 48 23387Google Scholar

    [33]

    Bashkatov A, Hossain S S, Yang X, Mutschke G, Eckert K 2019 Phys. Rev. Lett. 123 214503Google Scholar

    [34]

    Vogt H 1993 Electrochim. Acta 38 1427Google Scholar

    [35]

    Vogt H 2017 Electrochim. Acta 235 495Google Scholar

    [36]

    Vogt H 2013 Electrochim. Acta 87 611Google Scholar

    [37]

    Shah A, Jorne J 1989 J. Electrochem. Soc. 136 144Google Scholar

    [38]

    Lochiel A C, Calderbank P H 1964 Chem. Eng. Sci. 19 471Google Scholar

  • [1] 张心怡, 吴文华, 王建元, 张颖, 翟薇, 魏炳波. 超声场中气泡运动规律及其与枝晶相互作用机制.  , 2024, 73(18): 184301. doi: 10.7498/aps.73.20240721
    [2] 申潇卓, 吴鹏飞, 林伟军. 脉动气泡在黏性介质中的声发射.  , 2024, 73(17): 174701. doi: 10.7498/aps.73.20240826
    [3] 许鑫萌, 娄钦. 剪切增稠幂律流体中单气泡上升动力学行为的格子Boltzmann方法研究.  , 2024, 73(13): 134701. doi: 10.7498/aps.73.20240394
    [4] 柯庆, 代月花. 电化学金属化阻性存储器导电细丝生长中的离子动力学研究.  , 2023, 72(24): 248501. doi: 10.7498/aps.72.20231232
    [5] 李晓杰, 喻云泰, 张志文, 董小瑞. 基于电化学老化衰退模型的锂离子动力电池外特性.  , 2022, 71(3): 038803. doi: 10.7498/aps.71.20211401
    [6] 秦对, 邹青钦, 李章勇, 王伟, 万明习, 冯怡. 组织内包膜微泡声空化动力学及其力学效应分析.  , 2021, 70(15): 154701. doi: 10.7498/aps.70.20210194
    [7] 王文旭, 任衍彪, 张世超, 张临财, 亓敬波, 何小武. 类化学气相沉积法制备缺陷可控的三维石墨烯泡沫及其复合电极电化学性能.  , 2020, 69(14): 148101. doi: 10.7498/aps.69.20200454
    [8] 邢丽丹, 谢启明, 李伟善. 电解液及其界面电化学性质的机理研究进展.  , 2020, 69(22): 228205. doi: 10.7498/aps.69.20201553
    [9] 李想, 陈勇, 封皓, 綦磊. 声波激励下管路轴向分布双气泡动力学特性分析.  , 2020, 69(18): 184703. doi: 10.7498/aps.69.20200546
    [10] 刘征宇, 杨昆, 魏自红, 姚利阳. 包含液相扩散方程简化的锂离子电池电化学模型.  , 2019, 68(9): 098801. doi: 10.7498/aps.68.20190159
    [11] 曹亚南, 王贵师, 谈图, 汪磊, 梅教旭, 蔡廷栋, 高晓明. 基于可调谐二极管激光吸收光谱技术的密闭玻璃容器中水汽浓度及压力的探测.  , 2016, 65(8): 084202. doi: 10.7498/aps.65.084202
    [12] 唐远河, 王淑华, 崔进, 徐颖, 梅屹峰, 李存霞. 被动遥测矿井CO气体温度及浓度的正演研究.  , 2016, 65(18): 184201. doi: 10.7498/aps.65.184201
    [13] 苗博雅, 安宇. 两种气泡混合的声空化.  , 2015, 64(20): 204301. doi: 10.7498/aps.64.204301
    [14] 刘云龙, 汪玉, 张阿漫. 有倾角的竖直壁面附近气泡与自由面相互作用研究.  , 2013, 62(21): 214703. doi: 10.7498/aps.62.214703
    [15] 沈壮志, 吴胜举. 声场中气泡群的动力学特性.  , 2012, 61(24): 244301. doi: 10.7498/aps.61.244301
    [16] 李立群, 刘爱萍, 赵海新, 崔灿, 唐为华. TiO2/CdSe多层膜结构的制备及光电化学性能研究.  , 2012, 61(10): 108201. doi: 10.7498/aps.61.108201
    [17] 沈壮志, 林书玉. 声场中水力空化泡的动力学特性.  , 2011, 60(8): 084302. doi: 10.7498/aps.60.084302
    [18] 侯清玉, 赵春旺, 李继军, 王钢. Al高掺杂浓度对ZnO导电性能影响的第一性原理研究.  , 2011, 60(4): 047104. doi: 10.7498/aps.60.047104
    [19] 王晓亮, 陈硕. 液气共存的耗散粒子动力学模拟.  , 2010, 59(10): 6778-6785. doi: 10.7498/aps.59.6778
    [20] 侯清玉, 赵春旺, 金永军. Al-2N高共掺浓度对ZnO半导体导电性能影响的第一性原理研究.  , 2009, 58(10): 7136-7140. doi: 10.7498/aps.58.7136
计量
  • 文章访问数:  534
  • PDF下载量:  23
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-04-17
  • 修回日期:  2024-07-29
  • 上网日期:  2024-08-14
  • 刊出日期:  2024-09-20

/

返回文章
返回
Baidu
map