-
相比于笨重的台式光谱仪, 集成化的芯片级光谱仪可以应用于便携式的健康监测、环境检测等场景 . 我们设计了一个基于硅光子平台的片上光谱仪 . 该器件由一个透射光谱可重构的硅光滤波器构成 . 通过改变滤波器的透射光谱, 可以实现对输入光谱的多次且不同的采样 . 再结合人工神经网络算法, 从采样后的信号中重建出入射光谱 . 可重构的硅光滤波器由互相耦合的马赫曾德干涉仪和微环谐振腔组成 . 采用集成的热光相移器引入相位变化, 能够对滤波器的透射光谱进行重构 . 通过这种方式, 基于单个可重构滤波器可得到包含宽、窄光谱多样特征的响应函数 . 不需要滤波器阵列, 就可以实现对入射光谱的多样化采样, 能够显著地减小光谱检测器件的面积 . 仿真结果表明, 所设计的器件在1500—1600 nm波长范围内可以实现连续光谱和稀疏光谱的重建, 分辨率约为0.2 nm . 该器件在可穿戴光学传感、便携式光谱仪等场景中具有巨大的应用潜力 .
Spectroscopic analysis technique is an indispensable tool in many disciplines such as biomedical research, materials science, and remote sensing. Traditional benchtop spectrometers have several drawbacks; bulky, complex, and expensive, making them ineffective for emerging applications such as wearable health monitoring and Lab-on-Chip systems. Compared with bulky desktop spectrometers, integrated chip-level spectrometers find many applications in portable health monitoring, environmental sensing, and other scenarios. We design an on-chip spectrometer based on a silicon photonics platform. The device consists of a silicon photonic filter with a reconfigurable transmission spectrum. By changing the transmission spectrum of the filter, the multiple and diverse sampling of the input spectrum can be obtained. Using an artificial neural network algorithm, the incident spectrum is reconstructed from the sampled signals. The reconfigurable silicon photonic filter is composed of intercoupled Mach-Zehnder interferometer and micro-ring resonator. The introduction of thermal-optic phase shifter facilitates the reconstruction of the transmission spectrum of filter. Through this approach, a response function encompassing diverse features of broad and narrow spectra can be obtained from a single reconfigurable filter, eliminating the need for a filter array and significantly reducing the footprint of the spectrometer. Simulation results demonstrate that the designed device can achieve continuous and sparse spectrum reconstruction in a wavelength range of 1500–1600 nm, with a resolution of approximately 0.2 nm. On a test set composed of synthetic spectra, the calculated average RMSE for the reconstructed spectra is 0.0075, with an average relative error of 0.0174. Owing to the reconfigurable nature of the silicon photonic filter, this device exhibits the ability to flexibly adjust the number of sampling channels, thus enabling users to configure the chip according to specific application scenarios. This device possesses significant potential applications such as in wearable optical sensors and portable spectrometers. -
Keywords:
- computational spectral reconstruction /
- reconfigurable silicon photonic filters /
- deep learning /
- photonic integrated circuits
[1] Manley M 2014 Chem. Soc. Rev. 43 8200Google Scholar
[2] Bacon C P, Mattley Y, DeFrece R 2004 Rev. Sci. Instrum. 75 1Google Scholar
[3] Clark R N, Roush T L 1984 J. Geophys. Res. Solid Earth 89 6329Google Scholar
[4] Gao L, Qu Y, Wang L, Yu Z 2022 Nanophotonics 11 2507Google Scholar
[5] Wang J, Zheng B, Wang X 2021 J. Phys. Photonics 3 012006Google Scholar
[6] Redding B, Liew S F, Sarma R, Cao H 2013 Nat. Photonics 7 746Google Scholar
[7] Hartmann W, Varytis P, Gehring H, Walter N, Beutel F, Busch K, Pernice W 2020 Adv. Opt. Mater. 8 1901602Google Scholar
[8] Kwak Y, Park S M, Ku Z, Urbas A, Kim Y L 2021 Nano Lett. 21 921Google Scholar
[9] Hartmann W, Varytis P, Gehring H, Walter N, Beutel F, Busch K, Pernice W 2020 Nano Lett. 20 2625Google Scholar
[10] Hadibrata W, Noh H, Wei H, Krishnaswamy S, Aydin K 2021 Laser Photonics Rev. 15 2000556Google Scholar
[11] Xiong J, Cai X S, Cui K Y, Huang Y D, Yang J W, Zhu H B, Li W Z, Hong B, Rao S J, Zheng Z K, Xu S, He Y H, Liu F, Feng X, Zhang W 2022 Optica 9 461Google Scholar
[12] Craig B, Shrestha V R, Meng J, Cadusch J J, Crozier K B 2018 Opt. Lett. 43 4481Google Scholar
[13] Wang Z, Yi S, Chen A, Zhou M, Luk T S, James A, Nogan J, Ross W, Joe G, Shahsafi A, Wang K X, Kats M A, Yu Z 2019 Nat. Commun. 10 1020Google Scholar
[14] Zhu Y B, Lei X, Wang K X Z, Yu Z F 2019 Photonics Res. 7 961Google Scholar
[15] Bao J, Bawendi M G 2015 Nature 523 67Google Scholar
[16] Zhu X, Bian L, Fu H, Wang L, Zou B, Dai Q, Zhang J, Zhong H 2020 Light Sci. Appl. 9 73Google Scholar
[17] Piels M, Zibar D 2017 Sci. Rep. 7 43454Google Scholar
[18] Redding B, Liew S F, Bromberg Y, Sarma R, Cao H 2016 Optica 3 956Google Scholar
[19] Kim C, Ni P, Lee K R, Lee H N 2022 Sci. Rep. 12 4053Google Scholar
[20] Zhang Z, Li Y, Wang Y, Yu Z, Sun X, Tsang H K 2021 Laser Photonics Rev. 15 2100039Google Scholar
[21] Wen J, Hao L, Gao C, Wang H, Mo K, Yuan W, Chen X, Wang Y, Zhang Y, Shao Y, Yang C, Shen W 2023 ACS Photonics 10 225Google Scholar
[22] Li A, Fainman Y 2021 Nat. Commun. 12 2704Google Scholar
[23] Xu H, Qin Y, Hu G, Tsang H K 2023 Light Sci. Appl. 12 64Google Scholar
[24] Yuan S, Naveh D, Watanabe K, Taniguchi T, Xia F 2021 Nat. Photonics 15 601Google Scholar
[25] Guo L, Sun H, Wang M, Wang M, Min L, Cao F, Tian W, Li L 2022 Adv. Mater. 34 2200221Google Scholar
[26] Yao C, Chen M, Yan T, Ming L, Cheng Q, Penty R 2023 Light Sci. Appl. 12 156Google Scholar
[27] Yao C, Xu K, Zhang W, Chen M, Cheng Q, Penty R 2023 Nat. Commun. 14 6376Google Scholar
[28] Zhang S, Dong Y, Fu H, Huang S L, Zhang L 2018 Sensors 18 644Google Scholar
[29] Kim C, Park D, Lee H N 2020 Sensors 20 594Google Scholar
[30] Zhang W, Song H, He X, Huang L, Zhang X, Zheng J, Shen W, Hao X, Liu X 2021 Light Sci. Appl. 10 108Google Scholar
[31] 涂鑫, 陈震旻, 付红岩 2019 68 104210Google Scholar
Tu X, Chen Z M, Fu H Y 2019 Acta Phys. Sin. 68 104210Google Scholar
-
表 1 已报道的基于滤波器的计算光谱仪的性能比较
Table 1. Performance comparison of reported filter-based computational spectrometers.
-
[1] Manley M 2014 Chem. Soc. Rev. 43 8200Google Scholar
[2] Bacon C P, Mattley Y, DeFrece R 2004 Rev. Sci. Instrum. 75 1Google Scholar
[3] Clark R N, Roush T L 1984 J. Geophys. Res. Solid Earth 89 6329Google Scholar
[4] Gao L, Qu Y, Wang L, Yu Z 2022 Nanophotonics 11 2507Google Scholar
[5] Wang J, Zheng B, Wang X 2021 J. Phys. Photonics 3 012006Google Scholar
[6] Redding B, Liew S F, Sarma R, Cao H 2013 Nat. Photonics 7 746Google Scholar
[7] Hartmann W, Varytis P, Gehring H, Walter N, Beutel F, Busch K, Pernice W 2020 Adv. Opt. Mater. 8 1901602Google Scholar
[8] Kwak Y, Park S M, Ku Z, Urbas A, Kim Y L 2021 Nano Lett. 21 921Google Scholar
[9] Hartmann W, Varytis P, Gehring H, Walter N, Beutel F, Busch K, Pernice W 2020 Nano Lett. 20 2625Google Scholar
[10] Hadibrata W, Noh H, Wei H, Krishnaswamy S, Aydin K 2021 Laser Photonics Rev. 15 2000556Google Scholar
[11] Xiong J, Cai X S, Cui K Y, Huang Y D, Yang J W, Zhu H B, Li W Z, Hong B, Rao S J, Zheng Z K, Xu S, He Y H, Liu F, Feng X, Zhang W 2022 Optica 9 461Google Scholar
[12] Craig B, Shrestha V R, Meng J, Cadusch J J, Crozier K B 2018 Opt. Lett. 43 4481Google Scholar
[13] Wang Z, Yi S, Chen A, Zhou M, Luk T S, James A, Nogan J, Ross W, Joe G, Shahsafi A, Wang K X, Kats M A, Yu Z 2019 Nat. Commun. 10 1020Google Scholar
[14] Zhu Y B, Lei X, Wang K X Z, Yu Z F 2019 Photonics Res. 7 961Google Scholar
[15] Bao J, Bawendi M G 2015 Nature 523 67Google Scholar
[16] Zhu X, Bian L, Fu H, Wang L, Zou B, Dai Q, Zhang J, Zhong H 2020 Light Sci. Appl. 9 73Google Scholar
[17] Piels M, Zibar D 2017 Sci. Rep. 7 43454Google Scholar
[18] Redding B, Liew S F, Bromberg Y, Sarma R, Cao H 2016 Optica 3 956Google Scholar
[19] Kim C, Ni P, Lee K R, Lee H N 2022 Sci. Rep. 12 4053Google Scholar
[20] Zhang Z, Li Y, Wang Y, Yu Z, Sun X, Tsang H K 2021 Laser Photonics Rev. 15 2100039Google Scholar
[21] Wen J, Hao L, Gao C, Wang H, Mo K, Yuan W, Chen X, Wang Y, Zhang Y, Shao Y, Yang C, Shen W 2023 ACS Photonics 10 225Google Scholar
[22] Li A, Fainman Y 2021 Nat. Commun. 12 2704Google Scholar
[23] Xu H, Qin Y, Hu G, Tsang H K 2023 Light Sci. Appl. 12 64Google Scholar
[24] Yuan S, Naveh D, Watanabe K, Taniguchi T, Xia F 2021 Nat. Photonics 15 601Google Scholar
[25] Guo L, Sun H, Wang M, Wang M, Min L, Cao F, Tian W, Li L 2022 Adv. Mater. 34 2200221Google Scholar
[26] Yao C, Chen M, Yan T, Ming L, Cheng Q, Penty R 2023 Light Sci. Appl. 12 156Google Scholar
[27] Yao C, Xu K, Zhang W, Chen M, Cheng Q, Penty R 2023 Nat. Commun. 14 6376Google Scholar
[28] Zhang S, Dong Y, Fu H, Huang S L, Zhang L 2018 Sensors 18 644Google Scholar
[29] Kim C, Park D, Lee H N 2020 Sensors 20 594Google Scholar
[30] Zhang W, Song H, He X, Huang L, Zhang X, Zheng J, Shen W, Hao X, Liu X 2021 Light Sci. Appl. 10 108Google Scholar
[31] 涂鑫, 陈震旻, 付红岩 2019 68 104210Google Scholar
Tu X, Chen Z M, Fu H Y 2019 Acta Phys. Sin. 68 104210Google Scholar
计量
- 文章访问数: 893
- PDF下载量: 47
- 被引次数: 0