搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于第一性原理研究杂质补偿对硅光电性能的影响

王秀宇 王涛 崔雨昂 吴溪广润 王洋

引用本文:
Citation:

基于第一性原理研究杂质补偿对硅光电性能的影响

王秀宇, 王涛, 崔雨昂, 吴溪广润, 王洋

First-principles study of effect of impurity compensation on optical properties of Si

Wang Xiu-Yu, Wang Tao, Cui Yu-Ang, Wu Xi-Guang-Run, Wang Yang
PDF
HTML
导出引用
  • 通过磷(P)和硼(B)共掺杂在硅禁带中构建了P+/B局域态能级, 形成了具有杂质补偿结构的硅. 采用基于密度泛函理论框架下的第一性原理研究了杂质补偿硅(n/p-Sic)的电子态密度、介电函数和折射率等光电性能. 态密度研究表明, 相同浓度P和B掺杂(12.5%)的n-Si和p-Si被完全杂质补偿后, 费米能级位于两相邻态密度峰构成的谷底, 且态密度不为零. 在介电函数和折射率研究中, 发现n-Sic在掺杂比例CB/CP0 = 0.25时, 在低能区具有最大的介电函数和最大折射率. 此外, 对比本征硅及其掺杂物的介电常数实部(Re), 发现如下规律: 在E > 4 eV的高能区, 本征Si, n/p-Si和p-Sic的Re为负值; 而在0.64 < E < 1.50 eV的低能区, n-Sic在掺杂比例CB/CP0 = 0.25时的Re为负值; 这表明在此掺杂比例下n-Sic能在更低的能量下就能获得较好的金属性, 从而揭示了其价带电子更易被低能量的长波长光激发. 理论研究表明, n-Sic在掺杂比例CB/CP0 = 0.25时具有较好的光电性能, 可能与n-Si被B杂质补偿后部分Si—Si键变成Si—B键的同时产生的Si悬挂键以及在Si禁带中形成的局域态能级有关.
    Presently, impurity-compensated silicon (Si) has no clear potential applications due to high resistance and few carriers. Thus, it has received little attention from researchers. In this study, we find that impurity compensation can make localized state energy levels form in Si bandgap, which can improve the light absorption of Si in the near infrared region. In this work, in order to comprehensively and deeply understand the photoelectric properties of impurity-compensated Si, the localized state energy levels composed of P+/B ions are constructed in Si bandgap through the co-doping of phosphorus (P) and boron (B), thereby forming impurity-compensated Si. The first-principles based on a density functional theory framework is used to study the photoelectric properties of the impurity-compensated Si (n/p-Sic) such as the density of states (DOS), dielectric function and refractive index. The DOS study reveals the following results: after the n- and p-Si with the same concentration of P and B (12.5%) are fully compensated for by impurities, the Fermi energy levels of their compensated counterparts are at the valley bottom formed by the two adjacent DOS peaks, and the DOS is not zero at the valley bottom. In the study of dielectric function and refractive index, it is found that when the doping ratio is CB/CP0 = 0.25, n-Sic has the largest dielectric function and refractive index in the low energy region. In addition, comparing intrinsic Si with its doped counterparts in the real part (Re) of their dielectric constant, the following regularity is found: in the high energy region of E > 4 eV, the Re values of the intrinsic Si, n/p-Si and p-Sic are negative. In the low energy region of 0.64 eV< E < 1.50 eV, the Re value of n-Sic is negative for the doping ratio of CB/CP0 = 0.25. The above comparison indicates that the n-Sic with CB/CP0 = 0.25 can achieve good metallicity in the low energy region, indicating that the electrons in valence band are easily excited by low-energy long-wavelength light. Theoretical studies show that the good photoelectric properties of n-Sic with CB/CP0 = 0.25 may be related to Si dangling bonds and localized state energy levels in Si bandgap. The Si dangling bonds are caused by the impurity compensation of B dopant for n-Si, leading part of Si-Si bonds to change into Si-B bonds. This study provides theoretical guidance for the application of impurity-compensated Si in the field of photodetectors such as CMOS image sensors and infrared photodetectors.
      通信作者: 王秀宇, wxy@tju.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 62174118)资助的课题.
      Corresponding author: Wang Xiu-Yu, wxy@tju.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 62174118).
    [1]

    萧宏著 (杨银堂, 段宝兴译) 2013 半导体制造技术导论 (北京: 电子工业出版社) 第428页

    Xiao H (translated by Yang Y T, Duan B X) 2013 Introduction to Semiconductor Manufacturing Technology (Beijing: Publishing House of Electronic Industry) p428

    [2]

    Soref R 2006 IEEE J. Sel. Top. Quantum Electron. 12 1678Google Scholar

    [3]

    Li C, Zhao J H, Liu X H, Ren Z Y, Yang Y, Chen Z G, Chen Q D, Sun H B 2023 IEEE Trans. Electron Devices. 70 2364Google Scholar

    [4]

    Ge X, Chen D, Cui X Y, Ma H B, Li Y, Chen Y L 2022 Proceedings of the 7th International Conference on Integrated Circuits and Microsystems, Xi'an, China October 28–31, 2022 p24

    [5]

    霍奇斯, 杰克逊, 萨利赫 著 (蒋安平, 王新安, 陈自力 译) 2005 数字集成电路分析与设计: 深亚微米工艺 (北京: 电子工业出版社) 第1页

    Hodges D A, Jackson H G, Saleh R A (translated by Jiang A P, Wang X A, Chen Z L) 2005 Analysis and Design of Digital Integrated Circuits: In Deep Submicron Technology (Beijing: Publishing House of Electronic Industry) p1

    [6]

    刘恩科, 朱秉升, 罗晋生 2008 半导体物理学 (第七版) (北京: 电子工业出版社) 第41页

    Liu E K, Zhu B S, Luo J S 2008 The Physics of Semiconductors (7th Ed.) (Beijing: Publishing House of Electronic Industry) p41

    [7]

    Wang X Y, Wang T, Ren Q, Xu J T, Cui Y A 2023 Micro Nanostructures 184 207695Google Scholar

    [8]

    Green M A 2008 Sol. Energy Mater. Sol. Cells 92 1305Google Scholar

    [9]

    Pina J M, Vafaie M, Parmar D H, Atan O, Xia P, Zhang Y N, Najarian A M, Arquer F P G D, Hoogland S, Sargent E H 2022 Nano Lett. 22 6802Google Scholar

    [10]

    Mailoa J P, Akey A J, Simmons C B, Hutchinson D, Mathews J, Sullivan J T, Recht D, Winkler M T, Williams J S, Warrender J M, Persans P D, Aziz M J, Buonassisi T 2014 Nat. Commun. 5 301Google Scholar

    [11]

    Zhao J H, Li X B, Chen Q D, Chen Z G, Sun H B 2020 Mater. Today Nano 11 100078Google Scholar

    [12]

    韩冬, 孙飞阳, 鲁继远, 宋福明, 徐跃 2020 69 148501Google Scholar

    Han D, Sun F Y, Lu J Y, Song F M, Xu Y 2020 Acta Phys. Sin. 69 148501Google Scholar

    [13]

    Ma J J, Fossum E R 2015 IEEE J. Electron Devices Soc. 3 73Google Scholar

    [14]

    Larson L A, Williams J M, Current M I 2011 Rev. Accel. Sci. Technol. 04 11Google Scholar

    [15]

    Yokogawa S, Oshiyama I, Ikeda H, Ebiko Y, Hirano T, Saito S, Oinoue T, Hagimoto Y, Iwamoto H 2017 Sci. Rep. 7 3832Google Scholar

    [16]

    Khabir M, Alaibakhsh H, Karami M A 2021 Appl. Opt. 60 9640Google Scholar

    [17]

    Li F, Wang R S, Han L Q, Xu J T 2020 J. Semicond. 41 102301Google Scholar

    [18]

    Yang Y Y, Gong P, Ma W D, Hao R, Fang X Y 2021 Chin. Phys. B 30 067803Google Scholar

    [19]

    Yang L Z, Liu W K, Yan H, Yu X X, Gong P, Li Y L, Fang X Y 2024 Eur. Phys. J. Plus 139 66Google Scholar

    [20]

    Wang X Y, Liu Y P, Ding B N, Li M X, Chen T N, Zhu X T 2017 Superlattices Microstruct. 109 217Google Scholar

    [21]

    Jia Y H, Gong P, Li S L, Ma W D, Fang X Y, Yang Y Y, Cao M S 2020 Phys. Lett. A 384 126106Google Scholar

    [22]

    Ma Y, Yan H, Yu X X, Gong P, Li Y L, Ma W D, Fang X Y 2024 J. Appl. Phys. 135 054101Google Scholar

    [23]

    张晏蜜, 曹妍, 杨胭脂, 李佳龙, 廖杨芳 2021 低温 43 0135Google Scholar

    Zhang Y M, Cao Y, Yang Y Z, Li J L, Liao Y F 2021 Low Temp. Phys. Lett. 43 0135Google Scholar

    [24]

    Moore C, Adhikari C M, Das T, Resch L, Ullrich C A, Jentschura U D 2022 Phys. Rev. B 106 045202Google Scholar

    [25]

    Kong S S, Liu W K, Yu X X, Li Y L, Yang L Z, Ma Y, Fang X Y 2023 Front. Phys. 18 43302Google Scholar

    [26]

    Green M A, Keevers M J 1995 Prog. Photovoltaics Res. Appl. 3 189Google Scholar

    [27]

    Yamaguchi T 1975 Appl. Opt. 14 1111Google Scholar

    [28]

    余志强 2012 61 217102Google Scholar

    Yu Z Q 2012 Acta Phys. Sin. 61 217102Google Scholar

    [29]

    Diez M, Ametowobla M, Graf T 2017 J. Laser Micro/ Nanoeng. 12 230Google Scholar

  • 图 1  n-Si (a)和p-Si(b)及其杂质补偿模型 (c), (d)

    Fig. 1.  Models of n-Si (a) and p-Si (b) and their impurity compensated counterparts (c), (d).

    图 2  基于不同共掺杂浓度比的n-Sic态密度

    Fig. 2.  Density of states (DOS) of n-Sic based on different co-doping concentration ratios.

    图 3  基于不同共掺杂浓度比的p-Sic态密度

    Fig. 3.  DOS of p-Sic based on different co-doping concentration ratios.

    图 4  B/P掺杂对硅介电函数的影响

    Fig. 4.  Effect of B/P doping on the dielectric function of silicon.

    图 5  基于不同共掺杂浓度比的杂质补偿硅介电函数

    Fig. 5.  Dielectric functions of impurity compensated Si based on different co-doping concentration ratios.

    图 6  B/P掺杂对硅折射率和消光系数的影响

    Fig. 6.  Effects of B/P doping on the refractive index and extinction coefficient of Si.

    图 7  B/P掺杂对硅反射率的影响

    Fig. 7.  Effects of B/P doping on the reflectivity of Si.

    图 8  基于不同共掺杂浓度比的杂质补偿硅反射率

    Fig. 8.  Reflectivity of impurity compensated Si based on different co-doping concentration ratios.

    Baidu
  • [1]

    萧宏著 (杨银堂, 段宝兴译) 2013 半导体制造技术导论 (北京: 电子工业出版社) 第428页

    Xiao H (translated by Yang Y T, Duan B X) 2013 Introduction to Semiconductor Manufacturing Technology (Beijing: Publishing House of Electronic Industry) p428

    [2]

    Soref R 2006 IEEE J. Sel. Top. Quantum Electron. 12 1678Google Scholar

    [3]

    Li C, Zhao J H, Liu X H, Ren Z Y, Yang Y, Chen Z G, Chen Q D, Sun H B 2023 IEEE Trans. Electron Devices. 70 2364Google Scholar

    [4]

    Ge X, Chen D, Cui X Y, Ma H B, Li Y, Chen Y L 2022 Proceedings of the 7th International Conference on Integrated Circuits and Microsystems, Xi'an, China October 28–31, 2022 p24

    [5]

    霍奇斯, 杰克逊, 萨利赫 著 (蒋安平, 王新安, 陈自力 译) 2005 数字集成电路分析与设计: 深亚微米工艺 (北京: 电子工业出版社) 第1页

    Hodges D A, Jackson H G, Saleh R A (translated by Jiang A P, Wang X A, Chen Z L) 2005 Analysis and Design of Digital Integrated Circuits: In Deep Submicron Technology (Beijing: Publishing House of Electronic Industry) p1

    [6]

    刘恩科, 朱秉升, 罗晋生 2008 半导体物理学 (第七版) (北京: 电子工业出版社) 第41页

    Liu E K, Zhu B S, Luo J S 2008 The Physics of Semiconductors (7th Ed.) (Beijing: Publishing House of Electronic Industry) p41

    [7]

    Wang X Y, Wang T, Ren Q, Xu J T, Cui Y A 2023 Micro Nanostructures 184 207695Google Scholar

    [8]

    Green M A 2008 Sol. Energy Mater. Sol. Cells 92 1305Google Scholar

    [9]

    Pina J M, Vafaie M, Parmar D H, Atan O, Xia P, Zhang Y N, Najarian A M, Arquer F P G D, Hoogland S, Sargent E H 2022 Nano Lett. 22 6802Google Scholar

    [10]

    Mailoa J P, Akey A J, Simmons C B, Hutchinson D, Mathews J, Sullivan J T, Recht D, Winkler M T, Williams J S, Warrender J M, Persans P D, Aziz M J, Buonassisi T 2014 Nat. Commun. 5 301Google Scholar

    [11]

    Zhao J H, Li X B, Chen Q D, Chen Z G, Sun H B 2020 Mater. Today Nano 11 100078Google Scholar

    [12]

    韩冬, 孙飞阳, 鲁继远, 宋福明, 徐跃 2020 69 148501Google Scholar

    Han D, Sun F Y, Lu J Y, Song F M, Xu Y 2020 Acta Phys. Sin. 69 148501Google Scholar

    [13]

    Ma J J, Fossum E R 2015 IEEE J. Electron Devices Soc. 3 73Google Scholar

    [14]

    Larson L A, Williams J M, Current M I 2011 Rev. Accel. Sci. Technol. 04 11Google Scholar

    [15]

    Yokogawa S, Oshiyama I, Ikeda H, Ebiko Y, Hirano T, Saito S, Oinoue T, Hagimoto Y, Iwamoto H 2017 Sci. Rep. 7 3832Google Scholar

    [16]

    Khabir M, Alaibakhsh H, Karami M A 2021 Appl. Opt. 60 9640Google Scholar

    [17]

    Li F, Wang R S, Han L Q, Xu J T 2020 J. Semicond. 41 102301Google Scholar

    [18]

    Yang Y Y, Gong P, Ma W D, Hao R, Fang X Y 2021 Chin. Phys. B 30 067803Google Scholar

    [19]

    Yang L Z, Liu W K, Yan H, Yu X X, Gong P, Li Y L, Fang X Y 2024 Eur. Phys. J. Plus 139 66Google Scholar

    [20]

    Wang X Y, Liu Y P, Ding B N, Li M X, Chen T N, Zhu X T 2017 Superlattices Microstruct. 109 217Google Scholar

    [21]

    Jia Y H, Gong P, Li S L, Ma W D, Fang X Y, Yang Y Y, Cao M S 2020 Phys. Lett. A 384 126106Google Scholar

    [22]

    Ma Y, Yan H, Yu X X, Gong P, Li Y L, Ma W D, Fang X Y 2024 J. Appl. Phys. 135 054101Google Scholar

    [23]

    张晏蜜, 曹妍, 杨胭脂, 李佳龙, 廖杨芳 2021 低温 43 0135Google Scholar

    Zhang Y M, Cao Y, Yang Y Z, Li J L, Liao Y F 2021 Low Temp. Phys. Lett. 43 0135Google Scholar

    [24]

    Moore C, Adhikari C M, Das T, Resch L, Ullrich C A, Jentschura U D 2022 Phys. Rev. B 106 045202Google Scholar

    [25]

    Kong S S, Liu W K, Yu X X, Li Y L, Yang L Z, Ma Y, Fang X Y 2023 Front. Phys. 18 43302Google Scholar

    [26]

    Green M A, Keevers M J 1995 Prog. Photovoltaics Res. Appl. 3 189Google Scholar

    [27]

    Yamaguchi T 1975 Appl. Opt. 14 1111Google Scholar

    [28]

    余志强 2012 61 217102Google Scholar

    Yu Z Q 2012 Acta Phys. Sin. 61 217102Google Scholar

    [29]

    Diez M, Ametowobla M, Graf T 2017 J. Laser Micro/ Nanoeng. 12 230Google Scholar

  • [1] 王娜, 许会芳, 杨秋云, 章毛连, 林子敬. 单层CrI3电荷输运性质和光学性质应变调控的第一性原理研究.  , 2022, 71(20): 207102. doi: 10.7498/aps.71.20221019
    [2] 李发云, 杨志雄, 程雪, 甄丽营, 欧阳方平. 单层缺陷碲烯电子结构与光学性质的第一性原理研究.  , 2021, 70(16): 166301. doi: 10.7498/aps.70.20210271
    [3] 栾丽君, 何易, 王涛, LiuZong-Wen. CdS/CdMnTe太阳能电池异质结界面与光电性能的第一性原理计算.  , 2021, 70(16): 166302. doi: 10.7498/aps.70.20210268
    [4] 骆最芬, 岑伟富, 范梦慧, 汤家俊, 赵宇军. BiTiO3电子结构及光学性质的第一性原理研究.  , 2015, 64(14): 147102. doi: 10.7498/aps.64.147102
    [5] 余志强, 张昌华, 郎建勋. P掺杂硅纳米管电子结构与光学性质的研究.  , 2014, 63(6): 067102. doi: 10.7498/aps.63.067102
    [6] 程和平, 但加坤, 黄智蒙, 彭辉, 陈光华. 黑索金电子结构和光学性质的第一性原理研究.  , 2013, 62(16): 163102. doi: 10.7498/aps.62.163102
    [7] 杨春燕, 张蓉, 张利民, 可祥伟. 0.5NdAlO3-0.5CaTiO3电子结构及光学性质的第一性原理计算.  , 2012, 61(7): 077702. doi: 10.7498/aps.61.077702
    [8] 宋庆功, 刘立伟, 赵辉, 严慧羽, 杜全国. YFeO3的电子结构和光学性质的第一性原理研究.  , 2012, 61(10): 107102. doi: 10.7498/aps.61.107102
    [9] 逯瑶, 王培吉, 张昌文, 冯现徉, 蒋雷, 张国莲. Fe, S共掺杂SnO2材料第一性原理分析.  , 2012, 61(2): 023101. doi: 10.7498/aps.61.023101
    [10] 段永华, 孙勇. (α, β , γ)-Nb5Si3电子结构和光学性质研究.  , 2012, 61(21): 217101. doi: 10.7498/aps.61.217101
    [11] 余本海, 刘墨林, 陈东. 第一性原理研究Mg2 Si同质异相体的结构、电子结构和弹性性质.  , 2011, 60(8): 087105. doi: 10.7498/aps.60.087105
    [12] 逯瑶, 王培吉, 张昌文, 蒋雷, 张国莲, 宋朋. 第一性原理研究In,N共掺杂SnO2材料的光电性质.  , 2011, 60(6): 063103. doi: 10.7498/aps.60.063103
    [13] 逯瑶, 王培吉, 张昌文, 冯现徉, 蒋雷, 张国莲. 第一性原理研究Fe掺杂SnO2材料的光电性质.  , 2011, 60(11): 113101. doi: 10.7498/aps.60.113101
    [14] 刘建军. 掺Ga对ZnO电子态密度和光学性质的影响.  , 2010, 59(9): 6466-6472. doi: 10.7498/aps.59.6466
    [15] 于峰, 王培吉, 张昌文. N掺杂SnO2材料光电性质的第一性原理研究.  , 2010, 59(10): 7285-7290. doi: 10.7498/aps.59.7285
    [16] 李晓凤, 姬广富, 彭卫民, 申筱濛, 赵峰. 高压下固态Kr弹性性质、电子结构和光学性质的第一性原理计算.  , 2009, 58(4): 2660-2666. doi: 10.7498/aps.58.2660
    [17] 关丽, 李强, 赵庆勋, 郭建新, 周阳, 金利涛, 耿波, 刘保亭. Al和Ni共掺ZnO光学性质的第一性原理研究.  , 2009, 58(8): 5624-5631. doi: 10.7498/aps.58.5624
    [18] 林竹, 郭志友, 毕艳军, 董玉成. Cu掺杂的AlN铁磁性和光学性质的第一性原理研究.  , 2009, 58(3): 1917-1923. doi: 10.7498/aps.58.1917
    [19] 毕艳军, 郭志友, 孙慧卿, 林 竹, 董玉成. Co和Mn共掺杂ZnO电子结构和光学性质的第一性原理研究.  , 2008, 57(12): 7800-7805. doi: 10.7498/aps.57.7800
    [20] 段满益, 徐 明, 周海平, 沈益斌, 陈青云, 丁迎春, 祝文军. 过渡金属与氮共掺杂ZnO电子结构和光学性质的第一性原理研究.  , 2007, 56(9): 5359-5365. doi: 10.7498/aps.56.5359
计量
  • 文章访问数:  1818
  • PDF下载量:  76
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-11-16
  • 修回日期:  2024-03-15
  • 上网日期:  2024-04-17
  • 刊出日期:  2024-06-05

/

返回文章
返回
Baidu
map