搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

大晶粒UO2燃料裂变气体释放行为相场模拟研究

刘东昆 王庆宇 张田 周羽 王翔

引用本文:
Citation:

大晶粒UO2燃料裂变气体释放行为相场模拟研究

刘东昆, 王庆宇, 张田, 周羽, 王翔

Phase-field simulation on fission gas release behavior of large grain UO2 fuel

Liu Dong-Kun, Wang Qing-Yu, Zhang Tian, Zhou Yu, Wang Xiang
PDF
HTML
导出引用
  • 为预测大晶粒UO2燃料中裂变气体的释放行为, 从而为事故容错燃料的发展提供支持, 本文采用相场模型, 对裂变气体在UO2多晶微观结构中的释放行为进行了模拟. 该模型采用一组耦合的Cahn-Hilliard方程与Allen-Cahn方程, 用守恒场变量表示裂变气体与空位的分布, 以及用序参量区分气泡相与基质相. 该模型重点考察了不同晶粒尺寸、不同温度条件与扩散系数对裂变气体释放行为产生的影响, 展现了气泡的形核、生长、融合等行为, 得到了一定程度燃耗深度下燃料的孔隙度、晶界处气泡覆盖率、气泡平均半径等模拟结果. 结果表明, 温度与扩散系数对孔隙度、晶界处气泡覆盖率的影响较为显著, 在扩散系数较大时, 晶粒尺寸也会对裂变气体释放行为产生较大影响, 扩散系数较小时, 晶粒尺寸的影响则不明显. 此外, 通过该模型得出的高燃耗深度下裂变气体气泡分布状况与实验结果也较为符合, 该模型能较好地预测大晶粒UO2裂变气体释放行为.
    In order to predict the release behavior of fission gas in large grain UO2 fuel and provide support for the development of accident tolerant fuel, a phase-field model is used to simulate the release behavior of fission gas in the microstructure of UO2 polycrystalline in this work. This model adopts a set of coupled Cahn-Hilliard equations and Allen-Cahn equations, using conserved field variables to represent the distribution of fission gas and vacancies, and distinguishing bubble phase from matrix phase by using order parameters. This model focuses on investigating the effects of different grain sizes, temperature conditions, and diffusion coefficients on the release behavior of fission gas, demonstrating the nucleation, growth, and fusion behavior of bubbles. Simulation results are obtained for fuel porosity, bubble coverage on grain boundaries, and average bubble radius at a certain degree of burnup. The results show that temperature and diffusion coefficient have a significant influence on porosity and bubble coverage on grain boundaries. When the diffusion coefficient is high, grain size also has a significant influence on fission gas release behavior. And when the diffusion coefficient is low, the influence of grain size is not significant. In addition, the distribution of fission gas bubbles under high burnup obtained through this model is also in good agreement with experimental result. The model can predict the behavior of fission gas release in large grain UO2 fuel.
      通信作者: 王庆宇, wangqingyu@hrbeu.edu.cn
    • 基金项目: 哈尔滨工程大学高水平科研引导专项(批准号: 3072022JC1502)资助的课题.
      Corresponding author: Wang Qing-Yu, wangqingyu@hrbeu.edu.cn
    • Funds: Project supported by the Fundamental Research Funds for the Central Universities, China (Grant No. 3072022JC1502).
    [1]

    Rest J 2010 J. Nucl. Mater. 402 179Google Scholar

    [2]

    Trinkaus H, Singh B N 2003 J. Nucl. Mater. 323 229Google Scholar

    [3]

    Rest J, Hofman G L 1999 Nucl. Technol. 126 88Google Scholar

    [4]

    Pastore G, Luzzi L, Di Marcello V, van Uffelen P 2013 Nucl. Eng. Des. 256 75Google Scholar

    [5]

    Piro M H, Sunderland D, Livingstone S, Sercombe J, Revie R W, Quastel A, Terrani K A, Judge C 2020 Comprehensive Nuclear Materials (2nd Ed.) (Amsterdam: Elsevier) p248

    [6]

    何文, 伍晓勇, 吴璐, 温榜, 朱伟, 张伟, 潘荣剑, 王桢, 黄伟杰 2017 核动力工程 38 170Google Scholar

    He W, Wu X Y, Wu L, Wen B, Zhu W, Zhang W, Pan R J, Wang Z, Huang W J 2017 Nucl. Power Eng. 38 170Google Scholar

    [7]

    Killeen J C 1980 J. Nucl. Mater. 88 177Google Scholar

    [8]

    Cooper M W D, Pastore G, Che Y, Matthews C, Forslund A, Stanek C R, Shirvan K, Tverberg T, Gamble K A, Mays B, Andersson D A 2021 J. Nucl. Mater. 545 152590Google Scholar

    [9]

    Aagesen L K, Schwen D, Tonks M R, Zhang Y 2019 Comput. Mater. Sci. 161 35Google Scholar

    [10]

    Yuda R, Harada H, Hirai M, Hosokawa T, Une K, Kashibe S, Shimizu S, Kubo T 1997 J. Nucl. Mater. 248 262Google Scholar

    [11]

    庞华, 辛勇, 岳慧芳, 彭航, 蒲曾坪, 邱玺, 孙志鹏, 刘仕超 2022 材料导报 36 5Google Scholar

    Pang H, Xin Y, Yue H F, Peng H, Pu Z P, Qiu X, Sun Z P, Liu S C 2022 Mater. Rev. 36 5Google Scholar

    [12]

    Delafoy C, Dewes P, Miles T 2007 Proceedings of the 2007 LWR Fuel Performance Meeting/TopFuel 2007 San Francisco, CA, United States, September 30–October 3, 2007 p1

    [13]

    Kashibe S, Une K 1998 J. Nucl. Mater. 254 234Google Scholar

    [14]

    Che Y, Pastore G, Hales J, Shirvan K 2018 Nucl. Eng. Des. 337 271Google Scholar

    [15]

    Moelans N, Blanpain B, Wollants P 2008 Comput. Coupling Phase Diagrams Thermochem 32 268Google Scholar

    [16]

    郭灿, 康晨瑞, 高莹, 张一弛, 邓英远, 马超, 徐春杰, 梁淑华 2022 71 096401Google Scholar

    Guo C, Kang C R, Gao Y, Zhang Y C, Deng Y Y, Ma C, Xu C J, Liang S H 2022 Acta Phys. Sin. 71 096401Google Scholar

    [17]

    Hu S, Henager Jr C H 2009 J. Nucl. Mater. 394 155Google Scholar

    [18]

    Millett P C, El-Azab A, Rokkam S, Tonks M, Wolf D 2011 Comput. Mater. Sci. 50 949Google Scholar

    [19]

    Jiang Y B, Liu W B, Li W J, Sun Z Y, Xin Y, Chen P H, Yun D 2021 Comput. Mater. Sci. 188 110176.Google Scholar

    [20]

    Zhao J J, Sun D, Xi L, Chen P, Zhao J J, Wang Y Y 2023 Phys. Chem. Chem. Phys. 25 14928Google Scholar

    [21]

    Cahn J W, Hilliard J E 1958 J. Chem. Phys. 28 258Google Scholar

    [22]

    Li Y, Hu S, Montgomery R, Gao F, Sun X 2013 Nucl. Instrum. Methods Phys. Res. , Sect. B 303 62Google Scholar

    [23]

    Kittel C, Kroemer H 1980 Thermal Physics (New York: WH Freeman and Company) pp287–306

    [24]

    Moelans N 2011 Acta Mater. 59 1077Google Scholar

    [25]

    Moelans N, Blanpain B, Wollants P 2008 Phys. Rev. B 78 024113Google Scholar

    [26]

    Cahn J W 1961 Acta Metall. 9 795Google Scholar

    [27]

    Allen S M, Cahn J W 1972 Acta Metall. 20 423Google Scholar

    [28]

    Allen S M, Cahn J W 1973 Scr. Metall. 7 1261Google Scholar

    [29]

    Turnbull J A, Friskney C A, Findlay J R, Johnson F A, Walter A J 1982 J. Nucl. Mater. 107 168Google Scholar

    [30]

    Turnbull J A, White R J, Wise C 1989 Technical Committee on Water Reactor Fuel Element Computer Modelling in Steady State, Transient and Accident Conditions Preston, United Kingdom, September 18–22, 1988 p174

    [31]

    INTRODUCTION TO COMSOL Multiphysics, COMSOL Co Ltd. https://cdn.comsol.com/doc/5.2/IntroductionToCOMSOLMultiphysics.zh_CN.pdf [2023-11-1]

    [32]

    Millett P C, El-Azab A, Wolf D 2011 Comput. Mater. Sci. 50 960Google Scholar

    [33]

    Sagui C, Grant M 1999 Phys. Rev. E 59 4175.Google Scholar

    [34]

    Bullough R, Nelson R S 1974 Phys. Technol. 5 29Google Scholar

    [35]

    Zacharie I, Lansiart S, Combette P, Trotabas M, Coster M, Groos M 1998 J. Nucl. Mater. 255 85Google Scholar

    [36]

    Sheng J, Wang Y C, Liu Y, Wu S, Xu K, Chen Z H, Bo S, Liu H F, Song H F 2022 Comput. Mater. Sci. 213 111663Google Scholar

    [37]

    Wu S, Sheng J, Yang C, Shi X, Huang H, Liu Y, Song H 2022 Front. Mater. 9 916593Google Scholar

    [38]

    姜彦博, 柳文波, 孙志鹏, 喇永孝, 恽迪 2022 71 026103Google Scholar

    Jiang Y B, Liu W B, Sun Z P, La Y X, Yun D 2022 Acta Phys. Sin. 71 026103Google Scholar

  • 图 1  序参量ηϕi的取值在相场模型中的表现

    Fig. 1.  Representation of the values of order parameters η and ϕi in the phase-field model.

    图 2  自由能密度随浓度(cv, cg)分布的变化, 曲线最低点的横坐标为平衡浓度, 随着cg增加, $ c_{\text{v}}^{{\text{b, eq}}} $逐渐减小, f bubble,v的图像(蓝色虚线)将向左平移

    Fig. 2.  Variation of free energy density with concentration (cv, cg) distribution, the abscissa of the lowest point of the curve is the equilibrium concentration. As cg increases, $ c_{\text{v}}^{{\text{b, eq}}} $ gradually decreases, and the image of f bubble,v (blue dashed line) will shift to the left.

    图 3  T = 1276 K条件下直径5 μm晶粒与气泡随时间演化分布 (a) τ = 0 s; (b) τ = 140 s; (c) τ = 160 s; (d) τ = 200 s; (e) τ = 300 s; (f) τ = 550 s

    Fig. 3.  Distribution of grain with a diameter of 5 μm and bubble evolution over time at T = 1276 K: (a) τ = 0 s; (b) τ = 140 s; (c) τ = 160 s; (d) τ = 200 s; (e) τ = 300 s; (f) τ = 550 s.

    图 4  空位(cv, (a), (c))与裂变气体(cg, (b), (d))在τ = 140 s与τ = 550 s的浓度分布(不同的颜色代表浓度的取值) (a), (b) τ = 140 s; (c), (d) τ = 550 s

    Fig. 4.  Concentration distribution of vacancies (cv, (a) and (c)) and fission gases (cg, (b) and (d)) at τ = 140 s and τ = 550 s, different color represent the value of concentration: (a), (b) τ = 140 s; (c), (d) τ = 550 s.

    图 5  (a) 整个模拟区域内的平均自由能密度随时间的变化; (b) 总自由能密度在整个模拟区域分布, 颜色栏为取值范围; (c)某一气泡径向自由能密度分布

    Fig. 5.  (a) Variation of average free energy density over time in simulation area; (b) distribution of the total free energy density in simulation area, the color bar represents the range of values; (c) radial free energy density distribution of a certain bubble.

    图 9  相同温度不同晶粒尺寸, (a), (c), (e)孔隙度与(b), (d), (f)晶界气泡覆盖率随时间演化 (a), (b) T = 1276 K; (c), (d) T = 1476 K; (e), (f) T = 1676 K

    Fig. 9.  Evolution of (a), (c), (e) porosity and (b), (d), (f) bubble coverage on GB over time for the same temperature but different grain sizes: (a), (b) T = 1276 K; (c), (d) T = 1476 K; (e), (f) T = 1676 K.

    图 6  T = 1276, 1476, 1676 K条件下直径10 μm晶粒与气泡分布图 (a) T = 1276 K, τ = 180 s; (b) T = 1476 K, τ = 180 s; (c) T = 1676 K, τ = 180 s; (d) T = 1276 K, τ = 500 s; (e) T = 1476 K, τ = 500 s; (f) T = 1676 K, τ = 500 s

    Fig. 6.  Distribution of grains with a diameter of 10 μm and bubbles under T = 1276, 1476, 1676 K: (a) T = 1276 K, τ = 180 s; (b) T = 1476 K, τ = 180 s; (c) T = 1676 K, τ = 180 s; (d) T = 1276 K, τ = 500 s; (e) T = 1476 K, τ = 500 s; (f) T = 1676 K, τ = 500 s.

    图 7  直径10 μm晶粒3种温度条件下(a)孔隙度与(b)晶界气泡覆盖率随时间演化

    Fig. 7.  Evolution of (a) porosity and (b) bubble coverage on grain boundaries over time under three temperature conditions for grains with a diameter of 10 μm.

    图 8  T = 1476 K, τ = 250 s时晶粒与气泡分布 (a) 5 μm; (b) 10 μm; (c) 15 μm; (d) 20 μm

    Fig. 8.  Distribution of grains and bubbles at τ = 250 s, T = 1476 K: (a) 5 μm; (b) 10 μm; (c) 15 μm; (d) 20 μm.

    图 10  采用$ {D^{{\text{undoped}}}} $与$ {D^{{\text{doped}}}} $晶粒与气泡分布对比 (a) T = 1676 K, 15 μm, $ {D^{{\text{undoped}}}} $; (b) T = 1676 K, 15 μm, $ {D^{{\text{doped}}}} $; (c) T = 1476 K, 20 μm, $ {D^{{\text{undoped}}}} $; (d) T = 1476 K, 20 μm, $ {D^{{\text{doped}}}} $

    Fig. 10.  Comparison of the distribution of grains and bubbles using $ {D^{{\text{undoped}}}} $ and $ {D^{{\text{doped}}}} $: (a) T = 1676 K, 15 μm, $ {D^{{\text{undoped}}}} $; (b) T = 1676 K, 15 μm, $ {D^{{\text{doped}}}} $; (c) T = 1476 K, 20 μm, $ {D^{{\text{undoped}}}} $; (d) T = 1476 K, 20 μm, $ {D^{{\text{doped}}}} $.

    图 11  对于直径15 μm与20 μm晶粒, (a), (c) 孔隙度与(b), (d)晶界气泡覆盖率随时间演化 (a), (b) 直径15 μm; (c), (d) 直径20 μm

    Fig. 11.  Evolution of (a), (c) porosity and (b), (d) bubble coverage on grain boundary with time for grains with a diameter of 15 μm and 20 μm: (a), (b) Diameter 15 μm; (c), (d) diameter 20 μm.

    表 1  模拟采用的部分参数

    Table 1.  Parameters used in simulation.

    参数符号
    玻尔兹曼常量/(J·K–1)kB1.3806 × 10–23
    理想气体常数/(J·mol–1·K–1)R8.3145
    UO2晶胞U原子体积/ nm³Va0.0409
    空位形成能/eV$ E_{\text{v}}^{\text{f}} $5.1
    气体原子缺陷形成能/eV$ E_{\text{g}}^{\text{f}} $10.31
    扩散界面系数aGB1.2
    as0.8
    自由能势垒系数/(J·m–3)m3.0 × 107
    梯度项系数/(J·m–3)κϕ3.38 × 10–7
    κv, κg, κη1.69 × 10–6
    迁移率/(m3·J–1·s–1)Lη, Lϕ1.56 × 10–11
    裂变率密度/(次裂变·m3·s–1)$ \dot F $1.09 × 1019
    Xe产额Y0.27
    下载: 导出CSV

    表 2  不同温度下采用的扩散系数

    Table 2.  Diffusion coefficients used at different temperatures.

    温度T/K$ {D^{{\text{undoped}}}} $/(m2·s–1)$ {D^{{\text{doped}}}} $/(m2·s–1)
    12768.72 × 10–218.72 × 10–21
    14761.583 × 10–192.4593 × 10–19
    16765.7461 × 10–195.0906 × 10–19
    下载: 导出CSV
    Baidu
  • [1]

    Rest J 2010 J. Nucl. Mater. 402 179Google Scholar

    [2]

    Trinkaus H, Singh B N 2003 J. Nucl. Mater. 323 229Google Scholar

    [3]

    Rest J, Hofman G L 1999 Nucl. Technol. 126 88Google Scholar

    [4]

    Pastore G, Luzzi L, Di Marcello V, van Uffelen P 2013 Nucl. Eng. Des. 256 75Google Scholar

    [5]

    Piro M H, Sunderland D, Livingstone S, Sercombe J, Revie R W, Quastel A, Terrani K A, Judge C 2020 Comprehensive Nuclear Materials (2nd Ed.) (Amsterdam: Elsevier) p248

    [6]

    何文, 伍晓勇, 吴璐, 温榜, 朱伟, 张伟, 潘荣剑, 王桢, 黄伟杰 2017 核动力工程 38 170Google Scholar

    He W, Wu X Y, Wu L, Wen B, Zhu W, Zhang W, Pan R J, Wang Z, Huang W J 2017 Nucl. Power Eng. 38 170Google Scholar

    [7]

    Killeen J C 1980 J. Nucl. Mater. 88 177Google Scholar

    [8]

    Cooper M W D, Pastore G, Che Y, Matthews C, Forslund A, Stanek C R, Shirvan K, Tverberg T, Gamble K A, Mays B, Andersson D A 2021 J. Nucl. Mater. 545 152590Google Scholar

    [9]

    Aagesen L K, Schwen D, Tonks M R, Zhang Y 2019 Comput. Mater. Sci. 161 35Google Scholar

    [10]

    Yuda R, Harada H, Hirai M, Hosokawa T, Une K, Kashibe S, Shimizu S, Kubo T 1997 J. Nucl. Mater. 248 262Google Scholar

    [11]

    庞华, 辛勇, 岳慧芳, 彭航, 蒲曾坪, 邱玺, 孙志鹏, 刘仕超 2022 材料导报 36 5Google Scholar

    Pang H, Xin Y, Yue H F, Peng H, Pu Z P, Qiu X, Sun Z P, Liu S C 2022 Mater. Rev. 36 5Google Scholar

    [12]

    Delafoy C, Dewes P, Miles T 2007 Proceedings of the 2007 LWR Fuel Performance Meeting/TopFuel 2007 San Francisco, CA, United States, September 30–October 3, 2007 p1

    [13]

    Kashibe S, Une K 1998 J. Nucl. Mater. 254 234Google Scholar

    [14]

    Che Y, Pastore G, Hales J, Shirvan K 2018 Nucl. Eng. Des. 337 271Google Scholar

    [15]

    Moelans N, Blanpain B, Wollants P 2008 Comput. Coupling Phase Diagrams Thermochem 32 268Google Scholar

    [16]

    郭灿, 康晨瑞, 高莹, 张一弛, 邓英远, 马超, 徐春杰, 梁淑华 2022 71 096401Google Scholar

    Guo C, Kang C R, Gao Y, Zhang Y C, Deng Y Y, Ma C, Xu C J, Liang S H 2022 Acta Phys. Sin. 71 096401Google Scholar

    [17]

    Hu S, Henager Jr C H 2009 J. Nucl. Mater. 394 155Google Scholar

    [18]

    Millett P C, El-Azab A, Rokkam S, Tonks M, Wolf D 2011 Comput. Mater. Sci. 50 949Google Scholar

    [19]

    Jiang Y B, Liu W B, Li W J, Sun Z Y, Xin Y, Chen P H, Yun D 2021 Comput. Mater. Sci. 188 110176.Google Scholar

    [20]

    Zhao J J, Sun D, Xi L, Chen P, Zhao J J, Wang Y Y 2023 Phys. Chem. Chem. Phys. 25 14928Google Scholar

    [21]

    Cahn J W, Hilliard J E 1958 J. Chem. Phys. 28 258Google Scholar

    [22]

    Li Y, Hu S, Montgomery R, Gao F, Sun X 2013 Nucl. Instrum. Methods Phys. Res. , Sect. B 303 62Google Scholar

    [23]

    Kittel C, Kroemer H 1980 Thermal Physics (New York: WH Freeman and Company) pp287–306

    [24]

    Moelans N 2011 Acta Mater. 59 1077Google Scholar

    [25]

    Moelans N, Blanpain B, Wollants P 2008 Phys. Rev. B 78 024113Google Scholar

    [26]

    Cahn J W 1961 Acta Metall. 9 795Google Scholar

    [27]

    Allen S M, Cahn J W 1972 Acta Metall. 20 423Google Scholar

    [28]

    Allen S M, Cahn J W 1973 Scr. Metall. 7 1261Google Scholar

    [29]

    Turnbull J A, Friskney C A, Findlay J R, Johnson F A, Walter A J 1982 J. Nucl. Mater. 107 168Google Scholar

    [30]

    Turnbull J A, White R J, Wise C 1989 Technical Committee on Water Reactor Fuel Element Computer Modelling in Steady State, Transient and Accident Conditions Preston, United Kingdom, September 18–22, 1988 p174

    [31]

    INTRODUCTION TO COMSOL Multiphysics, COMSOL Co Ltd. https://cdn.comsol.com/doc/5.2/IntroductionToCOMSOLMultiphysics.zh_CN.pdf [2023-11-1]

    [32]

    Millett P C, El-Azab A, Wolf D 2011 Comput. Mater. Sci. 50 960Google Scholar

    [33]

    Sagui C, Grant M 1999 Phys. Rev. E 59 4175.Google Scholar

    [34]

    Bullough R, Nelson R S 1974 Phys. Technol. 5 29Google Scholar

    [35]

    Zacharie I, Lansiart S, Combette P, Trotabas M, Coster M, Groos M 1998 J. Nucl. Mater. 255 85Google Scholar

    [36]

    Sheng J, Wang Y C, Liu Y, Wu S, Xu K, Chen Z H, Bo S, Liu H F, Song H F 2022 Comput. Mater. Sci. 213 111663Google Scholar

    [37]

    Wu S, Sheng J, Yang C, Shi X, Huang H, Liu Y, Song H 2022 Front. Mater. 9 916593Google Scholar

    [38]

    姜彦博, 柳文波, 孙志鹏, 喇永孝, 恽迪 2022 71 026103Google Scholar

    Jiang Y B, Liu W B, Sun Z P, La Y X, Yun D 2022 Acta Phys. Sin. 71 026103Google Scholar

  • [1] 廖宇轩, 申文龙, 吴学志, 喇永孝, 柳文波. 陶瓷型复合燃料烧结过程的相场模拟研究.  , 2024, 73(21): 210201. doi: 10.7498/aps.73.20241112
    [2] 耿晓彬, 李顶根, 徐波. 固态电解质电池锂枝晶生长机械应力-热力学相场模拟研究.  , 2023, 72(22): 220201. doi: 10.7498/aps.72.20230824
    [3] 郭灿, 康晨瑞, 高莹, 张一弛, 邓英远, 马超, 徐春杰, 梁淑华. 金属基复合材料原位反应相场模型.  , 2022, 71(9): 096401. doi: 10.7498/aps.71.20211737
    [4] 姜彦博, 柳文波, 孙志鹏, 喇永孝, 恽迪. 外加应力作用下 UO2 中空洞演化过程的相场模拟.  , 2022, 71(2): 026103. doi: 10.7498/aps.71.20211440
    [5] 张更, 王巧, 沙立婷, 李亚捷, 王达, 施思齐. 相场模型及其在电化学储能材料中的应用.  , 2020, 69(22): 226401. doi: 10.7498/aps.69.20201411
    [6] 李洋, 苏婷, 梁宏, 徐江荣. 耦合界面力的两相流相场格子Boltzmann模型.  , 2018, 67(22): 224701. doi: 10.7498/aps.67.20181230
    [7] 张仲, 王欢, 王开元, 安欢, 刘彪, 伍建春, 邹宇. 第一性原理研究Zr的掺杂对Xe在UO2中溶解能力的影响.  , 2018, 67(4): 046101. doi: 10.7498/aps.67.20171863
    [8] 陈振飞, 冯露, 赵洋, 齐红蕊. 力和扩散机理下外延形貌的演化分析.  , 2015, 64(13): 138103. doi: 10.7498/aps.64.138103
    [9] 肖红星, 龙冲生. UO2 晶体中低密勒指数晶面表面能的分子动力学模拟.  , 2013, 62(10): 103104. doi: 10.7498/aps.62.103104
    [10] 潘诗琰, 朱鸣芳. 双边扩散枝晶生长的定量相场模型.  , 2012, 61(22): 228102. doi: 10.7498/aps.61.228102
    [11] 张宪刚, 宗亚平, 吴艳. 相场再结晶储能释放模型与显微组织演变的模拟研究.  , 2012, 61(8): 088104. doi: 10.7498/aps.61.088104
    [12] 魏承炀, 李赛毅. 温度梯度对晶粒生长行为影响的相场模拟.  , 2011, 60(10): 100701. doi: 10.7498/aps.60.100701
    [13] 陈秋云, 赖新春, 王小英, 张永彬, 谭世勇. UO2的电子结构及光学性质的第一性原理研究.  , 2010, 59(7): 4945-4949. doi: 10.7498/aps.59.4945
    [14] 陈云, 康秀红, 肖纳敏, 郑成武, 李殿中. 多晶材料晶粒生长粗化过程的相场方法模拟.  , 2009, 58(13): 124-S131. doi: 10.7498/aps.58.124
    [15] 赵达文, 李金富. 相场模型模拟液固界面各向异性作用下自由枝晶生长.  , 2009, 58(10): 7094-7100. doi: 10.7498/aps.58.7094
    [16] 冯 力, 王智平, 路 阳, 朱昌盛. 二元合金多晶粒的枝晶生长的等温相场模型.  , 2008, 57(2): 1084-1090. doi: 10.7498/aps.57.1084
    [17] 龙文元, 蔡启舟, 陈立亮, 魏伯康. 二元合金等温凝固过程的相场模型.  , 2005, 54(1): 256-262. doi: 10.7498/aps.54.256
    [18] 王红艳, 高 涛, 易有根, 谭明亮, 朱正和, 傅依备, 汪小琳, 孙 颖. UO2分子的多体项展式势能函数.  , 1999, 48(12): 2215-2221. doi: 10.7498/aps.48.2215
    [19] 李定国, 郑瑞林, 胡连. 二维大U-Hubbard模型的铁磁相研究.  , 1992, 41(2): 323-328. doi: 10.7498/aps.41.323
    [20] 杨炳良, 刘百勇, 郑耀宗, 王曦. SiOxNy薄膜高场电子陷阱和释放特性的研究.  , 1991, 40(11): 1855-1861. doi: 10.7498/aps.40.1855
计量
  • 文章访问数:  2217
  • PDF下载量:  64
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-11-09
  • 修回日期:  2023-12-11
  • 上网日期:  2023-12-22
  • 刊出日期:  2024-03-20

/

返回文章
返回
Baidu
map